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Abstract

Roll call scaling techniques, such as NOMINATE and IDEAL, are empirical stan-

dards for studies of voting behavior within legislative bodies. Though ideal point

estimation techniques are frequently used, the theoretical implications of assumptions

made in order to empirically estimate ideal points provide cause for concern. One as-

sumption that is frequently leveraged in studies of legislatures is that ideal points are

best represented in one or two dimensions. This assumption is key for further usage of

ideal points in formal models and examinations of elite polarization. Despite the im-

portance of this assumption, the dimensionality of the ideal point space is often simply
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fixed to fit theoretical expectations or tested using subjective post-hoc tests. In this

paper, I propose a method for properly modeling the dimensionality of the ideal point

space using a beta-Bernoulli Bayesian nonparametric prior. This prior structure allows

for the number of dimensions and ideal point estimates to be modeled simultaneously.

I apply this model to all sessions of the U.S. House (1st-114th) and show that there

is little evidence for the the low dimension conjecture in U.S. roll call scaling mod-

els. While the dimensionality of the policy space has decreased over recent sessions,

the current estimates are not atypical and previous periods of the U.S. Congress have

exhibited similar levels of high party level voting. This paper provides a meaningful

examination of dimensionality in the U.S. Congress and shows how seemingly innocu-

ous assumptions in the scaling procedures can lead to inappropriate inferences about

legislative behavior.
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1 Introduction

Studies of legislative behavior focus upon the relationship between legislative preferences,
institutional structure, and legislative outcomes. Spatial models are a frequently used tool
for studying these relationships. In a spatial model of voting bodies, policies are represented
geometrically and votes occur as a function of individual legislators’ ideal points. An ideal
point represents a legislator’s most preferred policy outcome and competing policies are
judged based upon their distances from her most preferred policy. Under the assumption of
utility-maximizing, rational legislators, the spatial model provides a consistent method for
researchers to understand how ideal points and policy lead to specific legislative outcomes.

A common task in the legislative behavior literature is to estimate the set of ideal points
for matrix of roll call data. In this data, the votes for each legislator on a variety of different
proposals are recorded. Then, a scaling procedure is used to determine the ideal points
for each legislator (Poole and Rosenthal, 1997; Clinton et al., 2004). Scaling procedures
typically seek to represent each policy votes on in the roll call set in a low-dimensional
Euclidian space. In turn, this allows estimation of ideal points in the same Euclidian space.
Thus, the scaling procedure admits a consistent space in which all votes within the roll call
set can be represented. Scaling roll call votes in this way implies that there exists a single
policy space in which represents all roll call votes within the analyzed roll call set.

The policy space uncovered by scaling methods encompasses the various complexities of
the legislator voting behaviors. While the ideal points, themselves, are generally of interest,
the uncovered policy space is also substantively interesting. For example, McCarty et al.
(2016) utilize ideal points estimated using NOMINATE methodology (Poole and Rosenthal,
1984) and the corresponding policy space to show increased polarization in elite voting over
time. This result (and many others like it) relies on the assumption that meaningful parts
of the policy space exist only in one dimension. This low-dimensionality conjecture is a key
part of numerous theories relating to changes in Congress over time and is key to many other
theories which utilize ideal point estimates.

McCarty et al. (2016) argue that there are between one and two dimensions in most
session of Congress. The first dimension projects legislators’ votes to a ”liberal-conservative”
dimension which corresponds mostly to economic issues. The second dimension, if needed,
corresponds to social issues of the time, typically questions related to race. Over time,
NOMINATE shows that the need for a second dimension has disappeared and most roll call
voting behavior can be described by the liberal-conservative dimension. The single dimension
argument has been the basis for many formal models and empirical findings about Congress
(Aldrich and Battista, 2002; Bafumi and Herron, 2010; Binder, 1999; Cameron, 2000; Cox
and McCubbins, 2005; Jessee, 2009, 2010; Krehbiel, 1992). However, many of these results are
incredibly sensitive to changes in this assumption; if the dimensionality of the congressional
vote choice model is any value greater than one, then median voter theorem no longer holds
and the results no longer hold (Kramer, 1973). Thus, strong evidence for the one-dimensional
model should be in place.

The low dimensional conjecture has many recent challenges in the roll call literature.
Crespin and Rohde (2010) and Roberts et al. (2016) analyze roll call votes in specific issue
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areas and uncover substantial evidence for a multidimensional voting strategy. Norton (1999)
shows the same when the analysis is concentrated on bills related to gender issues. These
works along with numerous other studies argue that NOMINATE scores are not necessarily
measuring ideology, rather they are measuring a summary of the observed voting behavior
of a legislator (Clinton, 2012; Snyder Jr, 1992); a legislator votes in accordance to party
pressures and the actual roll call votes are ”endogenous to legislative context” (Shepsle and
Weingast, 1986).

Research about how party leaders and party structure is particularly important in this
area as it posits how the structures within Congress can alter the votes that legislators
actually make (Dougherty et al., 2014; Aldrich, 1995). Hurwitz (2001) shows evidence of
multidimensionality on agricultural votes which have long been posited to follow geographic
bounds rather than strict party bounds. Jenkins (1999, 2000) examines the Confederate
Congress to show that without strong party influence, the structure and low-dimensionality
results about roll call votes disappears. Even in state legislatures where strong two party
systems do no exist, the low-dimensional results do not seem to have much evidence (Welch
and Carlson, 1973; Wright and Schaffner, 2002). In a comprehensive review of the U.S.
Congress, Lee (2009) argues that much of the structure of scaling estimates is a result of
partisan teamsmanship and does not truly represent ideology.

Aldrich et al. (2014) examines this notion and produces a number of simulations which
examine how scaling procedures like NOMINATE estimate number of dimensions. Of partic-
ular note, the authors show that as the distance between two parties increases in the common
space, scaling procedures tend to underestimate the true dimensionality of the space when
using proportional reduction of error metrics for making the decision. In other words, when
members of parties have a strong ”teamsmanship”, the dimensionality estimated tends to
one. To mitigate these problems, the authors suggest two more subtle approaches to esti-
mating the dimensions of the scaling model and the corresponding dimensionality: rigorous
statistical testing for the dimensionality of a space and allowing structural zeroes to be in-
troduced in the loadings matrix in order to prevent the assumption that all roll calls load
on all dimensions.

In this paper, I propose a model that addresses the two approaches suggested by Aldrich
et al. (2014). Built in a way similar to the Bayesian roll call scaling procedure introduced by
Clinton et al. (2004), I propose a beta process item-response theory model. BPIRT provides
an alternative scaling technique which explicitly estimates the number of dimensions needed
to best model the data along with the meaningful structural parameters. Using a Bayesian
specification, this method utilizes a nonparametric beta process prior on the loadings matrix
to address both the question of dimensionality and the introduction of structural zeroes that
specifically indicate which bills do not load on a given dimension. In selecting the number of
factors needed to describe the latent policy space, the beta process prior selects dimensions
which have loadings on any of the questions which are statistically different from zero. This
technique is in stark contrast to the methods for selecting NOMINATE dimensions, which
utilizes aggregate proportional reduction in error and a Scree-like procedure to select whether
or not a dimension is needed. While dimensions may not add much in terms of reduction in
error, this does not mean that they add nothing to the model; this incorrect conflation of
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small effect size and lack of meaningful contribution to the overall model leads NOMINATE
to unfairly favor low-dimensional models.

BPIRT also relaxes the standard requirement that all questions load on all dimensions.
While the Scree plot procedure implies that all bills and ideal points must exist in R

K ,
the beta process prior approach allows for a more nuanced interpretation where each bill
can exist in a subset of RK . This approach allows bills that differ in meaningfully in their
respective ideal point content to potentially be represented by different sets of dimensions.
Substantively, BPIRT models dimensions that point to disagreement within parties - if the
first dimension of the roll call scaling procedure most closely models party teamsmanship
(Lee, 2009), the dimensions beyond the first should measure departures from the strict party
model.

2 A Model for Roll Call Analysis

For a legislature, assume there are N voting members that vote on P bills over the course of
time analyzed. For any given vote j ∈ (1, P ), legislator i ∈ (1, N) must choose between
two alternatives: the proposed bill (Aj) or the status quo (Sj). In the standard context,
a ”Yea” vote corresponds to a vote for Aj and a ”Nay” vote corresponds to a vote for Sj .
Behavior in this legislature is assumed to be describable in a K-dimensional policy space -
all votes that are made by legislator i can be described by the K-dimensional point locations
of Aj and Sj within the space and a K-dimensional ideal point, ωi, which encapsulates the
policy preferences of legislator i.

Legislator i must choose whether to vote for Aj or Sj. Using a utility maximization model
that assumes quadratic loss in distance from her ideal point, assume that she chooses the
alternative which grants the highest utility:

Ui(Aj) = −‖ωi − Aj‖
2 + ηi,j

Ui(Sj) = −‖ωi − Sj‖
2 + νi,j

where ηi,j and νi,j are stochastic elements of the utility functions. In other words, she votes
for Aj if and only if Ui(Aj) > Uj(Sj).

This model is completely specified if a known structure is placed on ηi,j and νi,j. There are
three choices in structure that have been used extensively in the literature. Perhaps the best
known application, Poole and Rosenthal (1997) specify that these error structures follow
a Type-I extreme value distribution giving the model a similar structure to the standard
logistic regression model. In another instance, Heckman and Snyder Jr (1996) specify that
this error structure has a uniform structure. Finally, Clinton et al. (2004) specify Gaussian
errors giving the model a probit structure. Any of these choices lead to a tractable model.
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Aside from the choice of error distribution, this model requires assumptions about the
error structure in order to be tractable. First and foremost, it is assumed that given the
choice of error distribution, each ηi,j and νi,j ∀ i ∈ (1, N) , j ∈ (1, P ) is an independent
and identically drawn value from the respective distribution. Second, the error structures
can be jointly structured where E[ηi,j] = E[νi,j ] and V [ηi,j − νi,j ] = σ2

j . These assumptions
allow this model to be estimated using corresponding data and statistical specification.

Let yi,j be the vote choice that legislator i makes on proposal j - yi,j = 1 if legislator
i votes for Aj and yi,j = 0 if legislator i votes for Sj. Given the model construction, the
probability that legislator i votes for Aj can represented as:

P (yi,j = 1) = P (Ui(Aj) > Ui(Sj))

= P (−‖xi − Aj‖
2 + ηi,j > −‖xi − Sj‖

2 + νi,j)

= P (νi,j − ηi,j < −‖xi − Sj‖
2 − ‖xi −Aj‖

2)

= P (νi,j − ηi,j < 2(Aj − Sj)
′xi + S ′

jSj −A′

jAj)

= Ξ(λ′

jωi − αj)

where Ξ(·) is the CDF associated with the chosen error structure, αj = (A′

jAj − S ′

jSj)/σ
2
j ,

and λj = 2(Aj −Sj)/σ
2
j . Note that α and Λ are functions of the difference in point locations

of the proposed alternative and the status quo.

This construction admits a corresponding statistical model that allows for estimation of
the structural parameters α and Λ and the latent variables, Ω. Using the i.i.d. assumptions
about the error structures, a likelihood function can be derived:

L(α,Λ,Ω|Y) =
N
∏

i=1

P
∏

j=1

Ξ(λ′

jωi − αj)
yi,j ×

(

1− Ξ(λ′

jωi − αj)
)1−yi,j

This empirical model is closely related to the item-response theory model that is frequently
utilized in the psychometrics and education literatures. Bayesian implementations of this
model place priors on all of the structural parameters and estimation proceeds using Markov
Chain Monte Carlo methods.

3 Uncertainty in the Number of Factors

In many previous constructions of roll call scaling models, it has inherently been assumed
that the dimensionality, K, of the uncovered latent space is known. While theory can dictate
the choice of this value, it is often the case that assumptions about the dimensionality of the
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uncovered space are poorly motivated. Similarly, the dimensionality of the latent space can
be of as much interest as the estimates for the structural parameters. In order for proper
inferences to be made about dimensionality, tests should be used to estimate this quantity.

Inference on the number of dimensions in a latent variable model is both computationally
and conceptually challenging. Perhaps the oldest and most commonly used method for
determining the number of dimensions needed in a latent variable model is using metrics
related to error reduction and plotting them to perform a Scree test (Cattell, 1966). If
eigendecomposition is used to uncover the latent variables, then plotting the eigenvalues
associated with each dimension against the dimension number and finding the ”elbow” in
the plot is used to determine the appropriate number of factors. Similarly, proportion error
or proportion reduction in error metrics can be used to make the plot and the same procedure
is followed. These tests can be used to make claims about dimensionality, but they are not
comparable to the familiar statistical testing framework and can lead to poor inferential
choices for number of factors. More statistically rigorous methods are needed to answer this
question in a meaningful way.

One of the most intuitive approaches to estimating the number of factors in a Bayesian
context is to directly calculate the marginal likelihood for a number of different values of
K and select the model with the highest posterior probability (Ando, 2009). While this
approach is certainly the most familiar approach, analytically calculating the marginal like-
lihood is difficult and requires making a number of convenient assumptions with choice of
priors. Similarly, given the atypical functional form of the marginal distributions in latent
variable models with discrete margins, it would be difficult to create an analytical framework
that appropriately models the marginal likelihood.

Other more modern approaches use simulation methods to approximate the Bayes factor,
or the ratio of the marginal likelihoods of two competing models (Lee and Song, 2002;
Ghosh and Dunson, 2009). These approaches include path sampling and stochastic grid
searches. While these approaches require less assumptions than direct calculation of the
marginal likelihoods, they require running h different models when comparing h different
values of K. Though many advances have been made in the area of Bayesian computing,
estimation of factor analysis models can still be time consuming, especially when N becomes
large. As N grows larger, we should allow the models to be more complex, and trading
computational gains with limitations of the search space can lead to incorrect conclusions
about the dimensionality of the latent traits being modeled.

In contrast to the above approaches, the other branch of research in this area has allowed
K to vary as a part of the MCMC process used to estimate the factor analysis decomposi-
tion. An early approach to this problem utilizes reversible jump MCMC as an estimation
method for K (Lopes and West, 2004). RJMCMC works and allows the distribution of K
to be explicitly modelled. However, RJMCMC is computationally inefficient and can add
significant time to any MCMC procedure that utilizes the method.
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3.1 A Bayesian Nonparametric Approach

The most promising approach to solving this problem is to utilize nonparametric priors on
the number of factors and allow K to stochastically vary. Bayesian nonparametric priors
such as the Dirichlet process prior (Ferguson, 1973) are frequently used to learn the number
of features when each observation can belong to one feature only. These priors have strict
probabilistic properties that make usage in applied statistics attractive. The problem of
continuous latent variable modeling, however, is not that of clustering; since a single obser-
vation or item can be represented on more than one dimension, a more nuanced approach is
required.

One fully nonparametric approach is presented by Bhattacharya et al. (2011), who propose
a sparseness inducing normal-gamma process prior on K. This approach allows K to be
determined in a fully stochastic manner and is estimable through full Gibbs sampling. While
this approach would be appropriate in the case of only estimating a reduced dimensionality
covariance matrix, the fact that it does not estimate identifiable structural parameters makes
this method unattractive for measurement models in the social sciences. The approach by
Bhattacharya et al. (2011) does not invoke sparseness of the same set of factors each time
the model is run; though K is consistently estimated, the location of the K dimensions
is completely determined by the starting values of the corresponding MCMC estimation
method. While this is not problematic for reduced dimensionality covariance estimation,
theory driven measurement models rely on structural parameters for theory testing.

An alternative approach is presented by Kim et al. (2018), who count dimensionality in a
large sample. joint text and roll call space by utilizing a regularization approach. Similar to
Bayesian nonparametric approaches, regularization produces a sparse decomposition of the
observed data and measures the number of dimensions as those which have nonzero elements.
While this approach is computationally efficient, regularization prevents the ability to get
a full posterior distribution for the structural parameters of the latent variable model. If
the dimensionality related to specific items or individual latent variables is of interest, then
the full posterior is desirable. For very large data sets, regularization provides a reasonable
approach. However, sets of roll call votes are generally a reasonable size. Thus, an approach
that fully characterizes posterior distributions is desirable.

A purely Bayesian nonparametric approach which allows us to probabilistically model the
number of necessary factors in the factor model utilizes the beta process (Hjort, 1990). A
beta process is a Levy process which can be defined as follows:

Definition. Let Ω be a measurable space and B be its σ-algebra. Let H0 be be a continuous

probability measure on (Ω,B) and α a positive scalar. Assume that Υ can be divided into K

disjoint partitions, (B1, B2, ..., BK). The corresponding beta process is generated as:

H(Bk) ∼ Beta(αH0(Bk), α(1−H0(Bk))) (3.1)
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where Beta(·, ·) corresponds to the standard two-parameter beta distribution. Allow K → ∞

and H0(Bk) → 0, then H ∼ BP (αH0).

The beta process can be written in set-function form:

H(ν) =
∞
∑

k=1

πkδν,k(ν) (3.2)

where H(νi) = πi and δν,k(ν) is an arbitrary measure on ν. In the case of the beta process,
π does not serve as a PMF. Rather, π serves as part of a new measure that parameterizes a
Bernoulli process:

Definition. Let the column vector, rj, be infinite and binary with the kth value, rj,k:

ri,k ∼ Bern(πk) (3.3)

The new measure on the measurable space, Υ, is drawn from a Bernoulli process.

By arranging the samples for a set of infinite vectors as a matrix, we can see that a beta
process is a prior over an infinite binary matrix with each row corresponding to a location
in the measurable space.

Sampling from an infinite beta process is difficult, but a marginalized approach exists
(Paisley and Carin, 2009) that allows for a relatively simple sampling scheme. Define the
Bernoulli process dictating the values of the infinite matrix, R, as:

πk ∼ Beta

(

a

K
,
b(K − 1)

K

)

ri,k ∼ Bern(πkδi,k)

(3.4)

where a and b are hyperparameters and δi,k is an associated probability measure.

A beta process prior can be seen as a prior on an infinite binary matrix, R. R is assumed
to be a P ×∞ matrix where a one indicates the presence of a feature and a 0 indicates its
absence. This is a sparsity inducing prior, meaning that most columns of R will be inactive,
rj = 0.

The beta process prior of this form constitutes a simple stochastic process. Integrating out
π, this process is the two parameter Indian Buffet Process (IBP) (Ghahramani and Griffiths,
2006). This process can be imagined as follows (Thibaux and Jordan, 2007):
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1. The first customer enters an Indian buffet with an infinite number of dishes.

2. She helps herself to the first Pois(α) dishes.

3. The jth ∈ (1, ..P ) customer helps himself to each dish with probability mk

β+P−1
, where

mk is the number of times dish k ∈ (1, ..,∞) was previously chosen.

4. The jth customer tries Pois
(

αβ

β+j−1

)

new dishes.

The two IBP parameters play different roles in this setting. α dictates how many dishes a
customer tries assuming no other customers have visited the buffet. β dictates the a priori

probability that a customer tries a given dish. IBP is infinitely exchangeable, so it can
always be assumed that the current customer is the last customer. Infinite exchangeability
also allows there to exist a strict duality between a beta process and the IBP by de Fenetti’s
theorem (Diaconis and Freedman, 1980).

IBP has two notable properties for producing sparse matrices. First, the number of dishes
tried by a single customer is Pois(α). However, over the entire set of P customers, the number

of dishes sampled is Pois

(

P
∑

j=1

αβ

β+j−1

)

≈ O(log(P )). As P → ∞, the number of dishes

sampled also grows to infinity. This shows that as P increases, the implied complexity
of the model also increases. Second, IBP exhibits a ”rich get richer” property; as a dish
becomes more popular, the probability that it is samples in proceeding iterations increases.
In turn, dishes that are not popular amongst the customers are rarely sampled and have
a small chance of being included in the final model specification. Thus, IBP explores the
feature space in accordance with P , but still promotes sparsity by allowing popular dishes
to dominate the feature space. This allows the IBP prior to prevent against overfitting.

A finite approximation to the beta process can be made by setting the maximum number
of columns in R to a large, but finite, value (Doshi et al., 2009). For standard values of
P , setting the maximum number of features to 100 shows good behavior. As P increases,
the approximation performs more accurately. Similarly, when the number of features in the
data is small, the finite approximation shows even fewer losses. One way to minimize loss
due to the finite approximation is to allow any MCMC procedure to run for some number
iterations with an information-free prior. In this case, this equates to setting the number
of features that hold a feature to P

2
. Allowing a model utilizing this prior to mix for some

period of time shows improvement on selecting the correct number of dimensions.

Computational efficiency is an important part of any procedure considered and while the
infinite nature of the IBP is needed to ensure posterior consistency, searching for new fea-
tures is a costly algorithm (Knowles and Ghahramani, 2011). Similarly, poor choices for
α and β can lead to the introduction of spurious features. The finite procedure does not
add new features to the feature space beyond the initial over-encompassing set. Likewise,
the marginalized beta process does not require these hyperparameters when computing the
posterior probabilities for existing features. Therefore, α and β are not needed in the finite
specification. Given the increase in computational efficiency and the relatively similar per-
formance between the infinite and finite specifications, the finite specification is explored in
this paper. For a more thorough discussion of the infinite specification and applications to
latent feature models, see Knowles and Ghahramani (2011) and Doshi et al. (2009).
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4 A Beta Process IRT Model

Utilizing the theory above, a scaling procedure for binary outcomes utilizing a sparsity
inducing beta process prior can be made. Let X be a latent mapping of the observed
manifest data Y achieved via data augmentation such that:

xi,j ∼











T N−∞,0(λjωi − αj, 1) if yi,j = 0

T N 0,∞(λjωi − αj, 1) if yi,j = 1

N (λjωi − αj, 1) if yi,j is missing

(4.1)

then we can define a beta process IRT model as (BPIRT) as:

xi,j = (rj ⊙ λj)ωi − αj + ǫi,j (4.2)

where R is a P × K binary matrix. ⊙ is Hadamard multiplication, which is equivalent to
elementwise multiplication.

This specification induces a spike and slab prior on the matrix of loadings, Λ. Using the
beta process notation, the induced prior of λj,k is:

P (λj,k|rj,k, γk) ∼ rj,k N (0, γk) + (1− rj,k)δ0 (4.3)

where δ0 is a point mass PDF at zero (Dirac, 1981). Thus, when rj,k = 1, λj,k takes on a
non-zero value. This prior promotes sparsity in the loadings matrix by allowing elements
of Λ to take non-zero values if and only if a non-zero value adds something over fixing the
value at zero.

This construction allows us to define a full model:

P (xi,j|−) ∼ Np((rj ⊙ λj)ωi − αj, 1)

P (ωi) ∼ NK(0, IK)

P (λj,k|rj,k) ∼ rj,kNp(0, γ
−1

j,k ) + (1− rj,k)δ0

P (rj,k) ∼ Bern(πk)

P (πk) ∼ Beta(a/K, b(K − 1)/K)

P (γj,k) ∼ Gamma(c, d)

P (d) ∼ Gamma(c0, d0)

(4.4)

where i ∈ (1, ..., N), j ∈ (1, ..., P ), and k ∈ (1, ..., K). a, b, c, d, c0, d0 are prior hyperpa-
rameters. In this construction, normal priors are assumed on the factor loadings and Gamma
priors are assumed on the precisions for the various structural parameters.
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This model has many of the same features as the standard factor analysis model. The
manifest variables are decomposed into the loadings matrix, Λ, and the latent variables, Ω.
The dimensions of the latent variables are assumed to be orthogonal, a priori. Marginally,
P (xi−α) ∼ NK(0,Λ

′Λ+IK). The new additions, however, provide interesting properties for
the latent variable estimation. First, the addition of the infinite binary matrix, R, allows us
to learn about the true number of latent dimensions within the manifest data. R represents
whether feature k ∈ (1, ..., K) is a meaningful summary of the data. Similarly, it provides
a computational advantage in that many of the computations needed to estimate Λ are not
needed at each step; when rj,k = 0, there is no need to estimate λj,k. All in all, the beta
process IRT approach provides a computationally efficient approach to the dimensionality
problem that also provides interpretable estimates of the structural parameters.

Under this specification, estimation of the model using Gibbs sampling proceeds in a rela-
tively straightforward manner with sampling steps are outlined in Appendix A. Setting good
initial values can greatly increase the overall performance of this procedure. In particular,
good starting values for Λ and Ω can significantly speed up the convergence of the MCMC
chains. In order to do this, begin by setting the initial values of the latent copula random
variables, X , in accordance with their ordering. On this set of initial values, perform sin-
gular value decomposition to get good starting values for Λ and Ω. K is initially set to a
value that is believed to be much larger than the true dimensionality of the latent space,
typically around 100. The variance terms and other structural parameters are all initialized
at random.

4.1 Posterior Inference

A major problem in the standard latent variable specification is that the estimates for the
structural parameters are not uniquely identified without further constraints. We can obtain
an identical Ω by multiplying Λ by an orthonormal matrix, M, such that MM′ = I.
Following a common convention to ensure identifiability, many implementations of Bayesian
factor analysis assume that Λ has a full-rank lower triangular structure with positive elements
on the diagonal (Geweke and Zhou, 1996). The spirit of this recommendation relies on the
notion that the researcher can effectively place structural zeroes in the loadings matrix in
accordance with his theory of the latent space in mind. However, this is rarely achievable as
the theory behind a latent space is difficult to put in terms of the loadings matrix. Similarly,
the resulting prior on Λ is no longer exchangeable. When these constraints are placed in an
ad-hoc manner, they can lead to significant dependencies and multimodalities in the resulting
posterior. Note that similar constraints can be placed on the matrix of latent variables, Ω
(Clinton et al., 2004).

BPIRT avoids the issue of rotational invariance through the inducement of spike and slab
priors on the factor loadings. In short, the spike and slab priors on the factor loadings
prevents their respective posteriors from having both positive and negative support. A more
in-depth rationale of this reasoning is provided by Bhattacharya et al. (2011).
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One of the key inferential questions answered by this model pertains to the number of
orthogonal factors required to best summarize the manifest data. The beta process prior
and corresponding infinite binary matrix provides a method for making this inference; once
the Markov Chains have converged to the stationary distributions, the distribution of the
number of factors can be sampled from Monte Carlo draws. Under the finite specification
used in this paper, the distribution of the number of factors converges to a single positive
integer value. Theoretically, this can be seen as a conservative, lower-bound on the number
of dimensions needed to best describe the manifest set.

Inference on the structural parameters of BPIRT can be done as normal. The posterior
distribution of the factor scores, Ω, provide a measure of the latent scores for each obser-
vation. Over the set of observations, they describe a projection of the manifest set on the
latent space. Over the collection of latent factors, each factor is characterized by the factor
loadings, Λ, which load highly on them; this can be used to determine which covariates
influence each latent dimension. Similarly, R can be used to see which items have a non-
zero contribution to each dimension. This is in direct contrast to standard factor analysis
procedures which require that all questions explicitly load on all dimensions.

5 Simulation Results

To assess the quality of BPIRT, estimates of the structural parameters are compared against
known quantities using a synthetically created data set. For the first known data set, n =
1000, p = 500, and k = 10. The data set is generated with known Λ, Ω, and idiosyncratic
error variances. Λ is also designed with specific structural zeroes, thus a known R is also
simulated. 1000 thinned Monte Carlo draws are taken from the posterior after a burn-
in of 5000 iterations over 4 chains. Standard convergence tests were used and showed no
convergence issues.

A first check is to ensure that the model appropriately estimates the number of latent
dimensions. Figure 1 shows number of dimensions estimated by the model during each
iteration of the MCMC procedure over the 4 chains. For each of the 4 chains, the MCMC
chain converges to the correct value of 10. For this simulation, it only took around 200
iterations for the chain to converge to this value. Thus, we can see that BPIRT converges
to the appropriate number of dimensions given sufficient N and P .

Since the number of dimensions is correctly identified, R can also be examined to deter-
mine how accurately the model discovers the structural zeroes. With relation toΛ, structural
zeroes correspond to covariates that contribute only noise variance on a specific latent di-
mension. Figure 2 shows the true R against the median of the posterior draws for R. In this
case, R was recovered with approximately 94% accuracy. This performance is quite good
and shows that BPIRT also does a great job at locating structural zeroes in the loadings
matrix.
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Figure 1: Number of Dimensions over Iterations

An important comparison to make is to mixed factor analysis (Quinn, 2004), a standard
latent variable model for mixed margins. The two methods should perform similarly on the
simulated data. Given that mixed factor analysis doesn’t have a build in test for correct
dimensionality, the methods are compared using proportional error and proportional reduc-
tion in error 1 Figure 3 shows both measures for both models. The models perform similarly
on these metrics, as they should. However, the novelty of the IBP priors can be seen most
meaningfully in the proportional reduction in error plot. When attempting to select a di-
mensionality using a Scree-like procedure, the goal is to look for the proportional reduction

1Define the baseline predictions for the model as the error associated with using the mean response
for continuous margins and the modal response for discrete margins (i.e. k = 0). For models with positive
dimensionality (i.e. k ≥ 1), define the predicted values given point estimators for Λ and Ω as Ẏ = Λ̇Ω̇. Define

proportional error for a k-dimensional model as PE(k) =

n∑

i=1

p∑

j=1

|yi,j−ẏi,j|

n∑

i=1

p∑

j=1

yi,j

. Define proportion reduction in

error for a k-dimensional model as PRE(k) = PE(k)− PE(k − 1).
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Figure 2: True R vs. Estimated R

in error which the return from adding a new dimension gives ”diminishing returns”. In
this simulation, a researcher could reasonably argue to keep between 5 and 8 dimensions.
Similarly, if the researcher was only running models until she saw a plateau in the plot,
she might stop at 5. Given that this data is known to have 10 orthogonal dimensions, the
Scree procedure is likely to cause underestimates of the true dimensionality of the space.
This shows the importance of using a statistical procedure like the IBP prior when making
a decision of this sort.

One point that deserves further exploration is the effect of N and P on the ability of
BPIRT to estimate the correct number of dimensions in a model. Recall that the Indian
Buffet Process allows the a priori complexity of the model to grow as P increases; the
expected number of features in the prior is approximately log(P ). N also influences the
implied complexity of the model by providing more information for each estimate of λj,k. In
order to see the extent to which N and P influence the model’s estimated dimensionality,
the same simulations are run with varying N and P . The results from these simulations
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Figure 3: Proportion Error and Proportional Reduction in Error for BPCFA vs. Mixed
Factor Analysis

P = 100 P = 200 P = 300 P = 400 P = 500
N = 100 4 5 6 6 6
N = 200 6 7 8 8 8
N = 300 6 7 8 8 8
N = 400 6 8 10 10 10
N = 500 7 9 10 10 10
N = 1000 9 10 10 10 10

Table 1: Number of Dimensions Recovered from Simulated Data with 10 Orthogonal Di-
mensions

can be seen in Table 1. As P increases, the dimensionality approaches a plateau associated
with specific N , which makes sense given that the expected number of prior dimensions is a
function of P . On the other hand, as N increases, the dimensionality of the model is allowed
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Figure 4: Convergence to Eight Dimensions over Iterations

to increase and approaches the true value. However, this value never exceeds to the true
value. Thus, large N and P ensure that the true dimensionality of the model is uncovered.
On the other hand, when N and P are not sufficiently large, BPIRT is conservative and
returns a dimensionality lower than the truth.

6 Application to Congressional Roll Call Votes

To examine these theories and show the benefits of the BPIRT model, roll calls from the 1st-
114th sessions of the U.S. House are examined and the latent policy spaces are estimated for
each individual session, independently. For each session, four chains were run with a burn-in
of 5000 draws. 250 draws were collected from each chain thinned to take every 10th draw.
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Convergence was assessed using the diagnostics presented by the R package superdiag (Tsai
et al., 2012). There was no evidence indicating problems of convergence in these models.

6.1 The 107th U.S. House

To demonstrate the power of this model, the 107th of the U.S. House is examined, in depth.
The 107th session took place from January 3rd, 2001 to January 3rd, 2003. The 107th Congress
was characterized by the September 11th terrorist attacks and subsequent changes to trans-
portation, immigration, and defense policies. In response to the attacks, Congress voted to
allow the president to invade Iraq, which was an issue that created friction within both major
parties. Over the course of the session, Republicans had a slim majority in the House while
the Senate was changed leadership three times. This lack of stability created interesting
party dynamics and, in turn, led to interesting returns in roll call votes.

Running BPIRT for the 107th House yields a policy space with eight dimensions. Figure 4
shows the number of dimensions estimated by the model as a function of iteration. As with
the simulation, the model settles in on a value for the dimensionality in around 300 iterations.
In order to get an idea of what each of the dimensions corresponds to, bill summaries and
titles were scraped from voteview.com (Poole and Rosenthal, 2012). For a given dimension,
K, the summary of any bill, j, where P (rj,k = 1) > .95 was Tf-Idf weighted over the set of
included bills and most important words were discovered. These words can be seen in Figure
5.

Figure 5 shows dimension names and associated important words. The most important
dimension is the liberal-conservative dimension, which heavily corresponds to the first dimen-
sion in NOMINATE scores (correlation = .98). The other seven dimensions correspond to
different issue areas or bill types. General issues emerge as important dimensions in the roll
call record, like rural issues, social issues, trade, domestic spending, and defense spending.
On the other hand, this algorithm was able to go through and pick out a set of procedural
votes, which include votes on approving the Journal at the end of every meeting, celebrating
the 50th anniversary of the constitution of Puerto Rico, celebrating the completion of a new
railroad system, etc. The final dimensions is specific to the Congress, as it corresponds to
bills that were related to the 9/11 terrorist attacks. These bills discussed border control,
counterterrorism efforts, FAA reform, and numerous other topics related to changes after the
attacks. Along with the procedural dimension, these two dimensions provide great evidence
that BPIRT is picking theoretically important and distinct issue dimensions in the common
space estimation procedure.

Figure 6 shows plots of the mean estimate of legislators’ locations in the latent spaces for
four of the issue dimensions plotted against their corresponding liberal-conservative scores.
These plots show one of the big advantages of using the BPIRT procedure over NOMINATE
methodology - the ability to see within-party dynamics. For example, looking at the rural
issues dimension, there is little correlation between party and position on the rural dimension.
Looking deeper in the actual data, it is easy to see that legislators that scores highly on the
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rural dimension come from rural districts in Mississippi, Texas, New York, etc. Given that
the majority of bills that fall into this category for this Congress relate to infrastructure,
affordable Internet access, and agriculture, it is no surprise that legislators who are based
in rural areas vote differently than their urban-based counterparts. A similar, non-partisan
dynamic can be seen on the procedural dimension, with most legislators voting ”yes” on
almost all bills in the dimension. However, there are a set of legislators that are not in line
with the rest of the House. While procedural votes are rarely not passed, legislators use
these votes as ”protest” votes to show lack of faith in the parties. The legislators that load
highly on this dimension were vocal with their displeasure with the party at some point in
the session, so this variation makes sense.

Perhaps more interesting, the policy scores for social issues show different spreads across
the two parties. Looking at the plots for social issues and defense spending, there is a
noticeable difference between the spreads of the latent scores for Democrats and Republi-
cans; Democrats have much more spread in their scores than the Republicans. This can be
attributed to the power of the party as a coalition, or how frequently the party members
vote together on a specific set of issues. Figure 7 shows the proportion of members from
each party voting together on each bill that has a non-zero loading (P (rj,k = 1) > .95) on
social and defense spending issues, respectively. The difference between parties is stark; on
every bill in these issue areas, the Republican party was more unified than the Democratic
party. This feature of differing spread is unique to BPIRT and is not seen in the correspond-
ing NOMINATE scores, letting BPIRT answer a variety of inner-party questions that other
methods cannot.

The advantages of BPIRT over NOMINATE are not only substantive in nature, the scores
estimated by this method show significant increases in the ability to classify roll call votes.
An important comparison to make is between the ability of the BPIRT IBP prior to select
dimensionality and the PRE method used by NOMINATE. As discussed previously, BPIRT
only selects dimensions in accordance to the beta-Bernoulli process while NOMINATE selects
according to a Scree-like procedure using proportional reduction in error. Figure 8 shows
error rates and proportional reduction in error for both BPIRT and NOMINATE up to a
15 dimensional model. On first glance, it is obvious that the two models produce estimates
which are relatively similar in reduction in error. However, there are some minor, but
important differences. First, the error rate curve is shallower for BPIRT, implying that
there is more predictive power in higher dimensions in under the BPIRT model. Second, in
the proportion reduction in error plot, it is easy to see that BPIRT stops adding dimensions
when they no longer add predictive power that can be distinctly distinguished from statistical
noise. This makes selecting an appropriate number of dimensions quite simple. On the
other hand, looking at the curve for NOMINATE would reasonably lead one to select a
one-dimensional model; after the first dimension, the increase in predictive power decreases
quite a bit. However, this confuses small contributions with insignificant contributions and
leads to underestimation of the dimensionality of the model.

A more fine tuned way to examine these gains is to examine individual bills and examine
changes in classification ability. Figure 9 plots error rates for BPIRT against one-dimensional
NOMINATE. For a number of bills, NOMINATE and BPIRT perform similarly, implying
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Figure 6: Policy Space Plots for 107th U.S. House

Rural Trade Social 9/11 Defense Domestic Lib-Con Proced. PRE Gain

V0364 1 0 0 0 0 0 0 0 0.220
V0606 1 0 0 0 0 0 0 0 0.146
V0218 1 0 0 0 0 0 0 0 0.138
V0629 1 0 0 0 0 0 0 1 0.131
V0368 1 0 1 0 0 0 0 1 0.121
V0847 0 1 0 0 0 0 0 1 0.119
V0828 0 0 1 0 0 0 0 1 0.114
V0673 0 0 0 0 0 1 0 0 0.112
V0098 0 0 0 0 0 1 0 0 0.110
V0832 0 0 0 0 0 1 0 0 0.107
V0547 0 0 0 0 0 1 0 0 0.107

Table 2: Proportion Error Gain for BPIRT over NOMINATE

that one-dimension is sufficient for explaining vote behavior for a number of bills. However,
for the rest, there is non-zero contribution by the other dimensions. Table 2 shows the
IBP matrix, R, for the twenty bills which show largest gains in classification power using
BPFCA. The reason for this is easy to see - when bills do not load on the liberal-conservative
dimension, the gains for BPIRT are large. This speaks directly to the theory posited by
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Figure 7: Republican Vote Similarity vs. Democrat Similarity for Defense and Social Di-
mensions in the 107th U.S. House

Aldrich et al. (2014) that the low-dimensional conjecture is supported due to the requirement
that all bills load on all dimensions. In turn, this results in significant increases in the quality
of classification from the latent variable model. On the other hand, bills that load only on the
liberal-conservative dimension perform similarly to NOMINATE, meaning that the estimates
are essentially the same in low dimensions.

6.2 U.S. House over Time

Using BPIRT, the latent policy space was estimated for the U.S. House over the 1st session to
the 114th session. Using these estimates, I examine how the dimensionality of the U.S. House
has changed over time. McCarty et al. (2016) posits that polarization is increasing in the U.S.
Congress over time. While the main argument made is due to parties moving further apart
from one another in the latent space, they also argue that the dimensionality of Congress
is decreasing over time. Even in the case of a low-dimensional policy space, the authors
show that the need for higher dimensions decreases over time. As with all NOMINATE
dimensionality decisions, evidence of this phenomenon is shown using proportional reduction
in error as the main metric.
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Figure 8: Proportion Error and Proportional Reduction in Error for 107th U.S. House

This notion is reexamined using BPIRT and allowing the model to dictate how many
dimensions are needed to appropriately describe the latent space for each session. Figure
10 shows the estimated dimensionality of the policy space for each individual session of the
U.S. House. Examining the results returned by the BPIRT method shows that there is
little evidence for the low-dimensional conjecture over the course of all sessions of the U.S.
House. Looking at the more recent 100th - 114th sessions, there appears to be a decrease
in the overall dimensionality. However, this value never goes below 4 dimensions. In fact,
this period of time appears to have a higher dimensionality than earlier sessions of the U.S.
House. While this finding is certainly motivated by increases in the number of bills that are
voted on in each session increasing over time (≈ 60 in the 58th session to well over 1000 in
recent sessions), there is still strong evidence that the one dimension argument is incorrect.

From the 100th to the 114th sessions, there are four dimensions which are shared across all
sessions. In line with NOMINATE, a main liberal-conservative/party loyalty dimension is
included in all spaces estimated. However, other dimensions are statistically important. In
each session of the U.S. House, a procedural dimension appears which includes bills which are
related to standard procedural votes. Along with this, two issue dimensions appear: defense
spending and rural issues/rural spending. Given that these issues have long been debated in
Congress and have caused significant friction within parties, their presence in each session is
reasonable. On the other hand, a number of dimensions that were distinct in earlier sessions
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Figure 9: Proportion Errors in Classification for BPIRT vs. NOMINATE

disappear. For example, in the 100th session, an important dimension related to tax policy.
Over time, this dimension merges into a domestic spending dimension then collapses into the
liberal-conservative dimension, indicating that the contents of the policy space are evolving
over time. Though this analysis is brief, it points to a potential new usage of the BPIRT
model to examine the evolution of the policy space over the course of U.S. History.

An important question to ask about the BPIRT ideal point estimates is how they compare
to NOMINATE over time. A particular comparison that shows the value of added dimensions
is to examine the difference in proportion of votes explained by each model. Comparison
to a third case - the party only model 2 - is also useful. Figure 11 shows the proportion
of votes correctly classified for each of the models. This figure provides a number of useful
insights. First and foremost, this plot shows that votes in recent sessions of the U.S. House
can largely be predicted using the party only model. Whereas the average session of the
U.S. House shows that the party model can predict between 75% and 85% of votes, recent
sessions show that the party model can predict above 90% of votes. However, this is not
the only period in history where the party only model performs so well - party voting from

2For a given roll call vote, the party only model defines the proportion of votes that can be explained
by party alone. Here, the party vote is defined as the most common vote made by members of each party
for each roll call vote. Then, this vote is compared to the actual outcomes and the proportion correct is
compared to BPIRT and NOMINATE - 1 Dimensional
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Figure 10: Dimensionality of the U.S. House over Time

the 45th to the 60th sessions showed a high classification ability. This finding supports the
claims from McCarty et al. (2016) regarding the increase in party voting in recent times.

While the level of voting that can be explained by party is interesting, the role of roll
call scaling models is to provides novel insights beyond the party only model; if knowing a
member’s party provides most of the information about respective votes, then there is no
reason to estimate the richer metrics that the scaling procedures provide. For this reason, it
is important to examine proportion classification using the party only model as a baseline.
Placing the proportion of votes explained on this scale provides knowledge of what roll
call scaling methods provide beyond party loyalty. Figure 12 shows the comparison of
NOMINATE and BPIRT classification performance accounting for the strength of the party
only model. 3. This plot shows the value of added dimensions and the BPIRT procedure,
overall. While it is true that the number of votes correctly classified by the party only model
is increasing in recent times, the value of dimensions beyond the first is increased classification
of the error beyond party loyalty - on the order of 10% - 20%, on average. Given that the
value of roll call scaling techniques is the added intuition about how votes occur beyond
simple party loyalty, this plot demonstrates the need to include other dimensions in the

3For a session of the U.S. House, let POh be the proportion of votes classified by the party only model
in session h. Then, the party adjusted proportion votes explained is PAPEh = PEh−POh

1−POh
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Figure 11: Proportion Votes Explained By Various Models over Time

representation of ideal points in the spatial model. This finding corroborates and extends
the findings of Aldrich et al. (2014).

Note that this analysis treats each session as an independent entity and potential connec-
tions and similarities across time are not modeled. This analysis can be seen as a jumping
off point for a more thorough discussion of time trends and polarization in Congress. With
adjustments made to the modeling strategy to introduce dynamic preferences as introduced
by Martin and Quinn (2002), BPIRT can be used to better answer questions about changes
in representation by Congress over the course of U.S. history. In particular, improvement of
the Indian Buffet Process priors to allow for random walks across time will provide better
intuitions about the evolution of the policy space over the course of U.S. history.

7 Conclusion

The beta process IRT model is a powerful tool that estimates latent variables for measure-
ment in the social sciences. IBP priors on the loadings matrix allow BPIRT to provide an
automatic procedure for selection of dimensionality and placement of structural zeroes. This
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Figure 12: Proportion Party Adjusted Votes Explained By BPIRT and NOMINATE

nonparametric technique loosens a number of the assumptions that make factor analysis a
difficult and overly subjective procedure. This subjectiveness is demonstrated by analyzing
sessions of the U.S. House and showing that there is general tendency to underestimate the
dimensionality of the policy space implied by roll call scaling procedures. In turn, properly
modeling dimensionality can result in conclusions about voting behavior in the U.S. House
that is substantively different than conclusions made using post-hoc testing procedures.

This model is ripe for extension. As mentioned previously, allowing for dynamic modeling
of the latent space is a meaningful next step to allow for time trends to be appropriately
considered over a set of manifest variables. There are also numerous situations where hi-
erarchical priors would be appropriate; clustering within the matrix of ideal points would
allow for rich inference about the number of groups within the policy space. In particular,
allowing the number of clusters to follow a Chinese Restaurant Process prior would allow for
modeling the number of groups in the latent space without making prior assumptions about
what groups may exist within voting bodies. Another area where clustering is beneficial is in
the loadings matrix; requiring all questions in a manifest set to have the same loadings across
groups can be relaxed and this can be modeled hierarchically. Bayesian nonparametric tree
priors like Kingman’s coalescent provide a reasonable approach to introducing this model
dynamic.
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Substantively, these extensions will continue to provide ways to test theories related to
the U.S. Congress in a flexible empirical framework. Unlike other roll call scaling models
which have strict sets of assumptions that have strong theoretical implications for resulting
inference, Bayesian nonparametric priors provide a way to minimize assumptions and provide
relatively implication free estimation. In turn, these models can provide approaches that can
alter how research about the U.S. Congress is done.
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A Estimation of the BPIRT Model

Estimation of the BPIRT model uses the following Gibbs sampling routine:

1. Sample the latent variable, X. For each i ∈ (1, ..., n) and j ∈ (1, ..., p), sample
xi,j from a truncated normal distribution according to:

xi,j ∼











T N−∞,0(λjωi − αj, 1) if yi,j = 0

T N 0,∞(λjωi − αj, 1) if yi,j = 1

N (λjωi − αj, 1) if yi,j is missing

(A.1)

2. Sample R and Λ jointly. Define K+ as the current number of active features. For
each j ∈ (1, ..., p) and k ∈ (1, ..., K+) define:

tj,k =
P (rj,k = 1|Y,−)

P (rj,k = 0|Y,−)

=
P (Y |rj,k = 1,−)

P (Y |rj,k = 0,−)

P (rj,k = 1)

P (rj,k = 0)

(A.2)

P (Y |rj,k = 1,−)

P (Y |rj,k = 0,−)
=

√

γk
γ

exp

(

1

2
γµ2

)

(A.3)

P (rj,k = 1)

P (rj,k = 0)
=

m−j,k

p−m−j,k + 1
(A.4)

where γ = ω′

kωk + γk, µ = 1

γ
ω′

kÊj , Êj = xj − λjΩ + αj setting λj,k = 0, and m−j,k =

−rj,k +
p
∑

h=1

rh,k. Let

pr=1 =
tj,k

1 + tj,k
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then sample P (rj,k|−) ∼ Bern(pr=1). If rj,k = 1, then sample P (λj,k|−) ∼ N (µ, γ−1).
Otherwise, set λj,k = 0.

3. Remove Inactive Features and Normalize Λ. For each k ∈ (1, ..., K+), if rj,k =
0 ∀ 1 ≤ j ≤ p, remove K from the analysis. Recalculate K+. Post-process Λ to
normalize the variance. For each j ∈ (1, ..., p) and k ∈ (1, ..., K+) set λj,k:

λj,k =
λj,k

√

1 +
K+
∑

h=1

λ2
j,h

(A.5)

4. Sample Ω. For each i ∈ (1, ..., n), sample ωi from:

P (ωi|−) ∼ NK+(Λ′Λ+ IK+)−1Λ′yi, (Λ
′Λ + IK+)−1) (A.6)

5. Sample Item Level Intercepts, αj . For each j ∈ (1, ...p), sample the item level
intercept from:

P (αj|−) ∼ N

(

λjΩ− xj ,
1

n

)

(A.7)

6. Sample Factor Precisions, γk. For each k ∈ (1, ..., K+), sample γk from:

P (γk|−) ∼ Gamma

(

c+
mk

2
, d+

p
∑

j=1

λ2

j,k

)

(A.8)

where mk is the number of sources for which feature K is active.

7. Sample d. Sample d from:

P (d|−) ∼ Gamma

(

c0 + cK+, d0 +
K+

∑

k=1

γk

)

(A.9)

33


