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Objectives

Tree-structured priors (Adams et al., 2010) can be used as a method for
uncovering hierarchical clusters or as a prior in other methods. I propose
an infinite hierarchical factor analysis which allows identification of
latent cluster dependencies. These dependence structures answer
questions about the appropriateness of bridging and how voting
coalitions evolve over time in the U.S. House.

Problem
Unsupervised clustering techniques try to find groups within data that
are conditionally exchangeable. A nonparametric approach uses the
Dirichlet process.
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Dirichlet Process Clustering
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True DGP

What if the true DGP is hierarchical? Understanding the conditional
relationships between clusters increases the statistical power of the
model and adds richness to the inference.

A Generative Solution
Most hierarchical clustering approaches are not generative (e.g.
agglomerative hierarchical clustering). This prohibits usage as a prior in
other models.
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Graph Based Prior
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Hierarchical Clustering Prior

Treat the hierarchy as a graph; links between clusters are found based
on a directed graph. This definition allows interpretation as a probability
density over clusters. Fits within the Bayesian nonparametric
framework.

Estimation of Infinite Trees
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P(x ∈ [1]) ∝ P(x|θ1)ν1

P(x ∈ [1,1]) ∝ P(x|θ1,1)(1 − ν1)ψ1→1,1ν1,1 P(x ∈ [1,2]) ∝ P(x|θ1,2)(1 − ν1)ψ1→1,2ν1,2
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Traversing an Infinite Tree

ν1 (1 − ν1)P(x ∈ [1]) = ν1
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Tree Structured Stick Breaking Prior

Interweave two stick breaking processes - node stopping and tree path
(Adams et al., 2010).
Cluster locations in the data space follow a Gaussian Process.
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Gaussian Process Prior on Cluster Locations
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Cluster Links and Conditional Dependence

Links between clusters imply
conditional dependence -
knowing the location of one
cluster gives information about
the location of the other cluster,
like in a directed acyclic graph.
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Conditional Probability and Linkages

Nonparametric Hierarchical Clustering for Text and Images

Change likelihood function with application - normal for continuous
data, Von Mises-Fisher for text, Bernoulli for images. Find deep
hierarchies within data sets using TSSBP.

2500 Odd Digits from MNIST
Handwritten Numbers data set.
Bernoulli likelihood over 256
binary features extracted from
each image using a neural net.
Tree shown represents path of
≈ 80% of data.

Top−Level Subtree (> 100 Images)

MNIST Handwritten Digits (Odd)

Infinite Hierarchical Latent Variable Model
ihFA:

yi,j ∼ η(λjωi − αj)
Λ ∼ IBP(a, b)

Ω ∼ TSSBP(α0, γ, λ0)

Place Indian Buffet Process prior on loadings. Place TSSBP prior on ideal
point errors. Estimates dimensionality of space along with a hierarchical
tree over ideal point departures from underlying quadratic loss function.

Bridging Data Sets in Latent Variable Models

Bridging combines two data sets and estimates ideal points in the same
latent space. Assumes missingness at random. Should we jointly scale
the U.S. House and U.S. Senate?

Test: Residuals of data missing at random should be conditionally
exchangeable given the model parameters. Should link to a common
non-root node in the ideal point tree.
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House Democrat

House Republican

Senate Democrat

Senate Republican

Ideal Points and Cluster Paths for 115th U.S. Congress Cluster Membership and Links

Data breaks over party and chamber. IID assumption is violated -
without further correction, problems arise similar to omitted variable
bias in regression. Bridging across chambers leads to biased ideal points.

Coalitions in the U.S. House
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U.S. House Session

Cluster Links in the 80th − 100th Sessions of the U.S. House Links show dependencies in
voting across groups. Southern
Democrats were a prevalent
group in the 20th century U.S.
House. After 1961, Democrats in
name only.

Still voted with Dems on some issues, but more information gained from
location of Reps. Eventually split into Reps and Conservative Dem.
groups. Rep. revolution essentially removed Conservative Dems. and
the south transitioned to Republican representation.
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