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A Motivating Example

Sam writes down a number and flips a coin.

If the coin turns up heads, then Sam tells Jen if the number is even or
odd.

If the coin turns up tails, Sam lies to Jen.

Jen then guesses if Sam’s number is even or odd.

Let θ be the probability that Jen correctly guesses if Sam’s number is
even or odd.
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A Motivating Example

Before any data has been collected:
1 What is our best guess about θ?
2 What is the probability that θ > 1

2?

After data has been collected:
1 What is our best guess about θ?
2 What is the probability that θ > 1

2?
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Statistics as a Whole

Statistics is largely the study of quantifying uncertainty.

Models are used to describe and predict outcomes from data.

Explore meaningful hypotheses using observable data.

Much of the burden of data analysis arises in describing the quality of
inferences made from data.
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The Frequentist Paradigm

A frequentist approach quantifies uncertainty in terms of repeating
the procedure that generates the data a large number of times.

Parameters of interest (θ) are fixed and unknown. These are what we
are inferring using models.

The sample data (Y ) is random.

A frequentist approach never views θ as a random variable.

P(θ > x) =???

All probability statements are made about randomness in the data.
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The Frequentist Paradigm

Inference is made using a statistic (θ̂), which is a function of the data.

This statistic should be representative of θ (Consistent, Efficient,
Sufficient, etc.)

θ̂ has a sampling distribution - the distribution of uncertainty
associated with θ̂ due to randomness in the data.

θ does not have a distribution.
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The Frequentist Paradigm

A common approach for testing hypotheses is to reject the null if a
test statistic exceeds some threshold.

For example, for H0 : θ = 0 reject H0 if |θ̂| > α.

A p-value is the probability of observing a test statistic as extreme as
observed if sampling repeated a large number of times.

Inverting the above test yields a α% confidence interval.

A confidence interval should contain the true value of θ α% of times
we repeat sampling.
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The Frequentist Paradigm

Frequentist tests never say the probability that the null is true.

Frequentist confidence intervals have no probabilistic interpretation -
the probability that a single confidence interval contains the true
value of θ is 0 or 1.
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Back to the Motivating Example

From a frequentist perspective.

Before any data has been collected:
1 What is our best guess about θ? No Idea
2 What is the probability that θ > .5? θ isn’t a random variable, so it

doesn’t have a distribution.

After data has been collected:
1 What is our best guess about θ? The sample proportion.
2 What is the probability that θ > .5? This is a nonsense question. θ

isn’t a random variable.
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Why does any of this matter?

”Then you should say what you mean,” the March Hare went on.

”I do,” Alice hastily replied; ”at least–at least I mean what I
say–that’s the same thing, you know.”

”Not the same thing a bit!” said the Hatter. ”You might just as well
say that ”I see what I eat” is the same thing as ”I eat what I see”!

— Lewis Carroll
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Why does any of this matter?

There’s a time and a place for everything – frequentist statistics
aren’t inherently bad.

Speaking frequentism is often not what we want to say.

With models, we often want to make probabilistic claims (i.e. the
probability that θ > 0 is greater than .95).

Assumptions are often obscured and difficult to justify.

There is often prior knowledge that we want to introduce into
analysis.

Not all questions fit in the strict statistical hypothesis framework.
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Why does any of this matter (especially to a social

scientist)?

Where does frequentism fit when the idea of resampling is impossible?

Genocide, elections, market crashes, etc. are all isolated events that
cannot be recreated by the scientific process.

What about Congressional roll call votes? We have the entire
accurate sample. How can uncertainty be related to sampling?

These are important philosophical concerns that relate to how we
interpret results.

Rigid definition of probability leads to poor inference and, in turn,
poor science.
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De Finetti Drops the Mic

PROBABILITY DOES NOT EXIST: The abandonment of superstitious
beliefs about...Fairies and Witches was an essential step along the road to
scientific thinking. Probability, too, if regarded as something endowed with
some kind of objective existence, is not less a misleading misconception,
an illusory attempt to exteriorize or materialize our true probabilistic
beliefs. In investigating the reasonableness of our own modes of thought
and behaviour under uncertainty, all we require, and all that we are
reasonably entitled to, is consistency among these beliefs, and their
reasonable relation to any kind of relevant objective data (relevant in as
much as subjectively deemed to be so). This is Probability Theory.

— Bruno de Finetti
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Subjective Uncertainty

Sometimes, probability should
reflect the strength of belief
that something is true.

This is in stark contrast to
objectivist notions of probability
– probability is no longer
assumed a property of the
object under study.

Bayesian methods provide
structured rules for quantifying
subjective uncertainty.

Bayes theorem provides a
method for updating our beliefs
about θ after observing data.
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Beliefs as Distributions

θ is a fixed but unknown feature of the population from which data is
being samples.

There is a true θ and sampled data is a function of this true value.

However, θ is only observable as a random variable with subjective
uncertainty.

Our beliefs about the value of θ are conditional on data and can be
represented by probability, P(θ|Y ).
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Beliefs as Distributions

Beliefs must follow the rules of probability distributions:

1

∞∫
−∞

P(θ|Y )dθ = 1

2 P(θ|Y ) ≥ 0 ∀ θ ∈ (−∞,∞)

P(θ|Y ) is known as the posterior distribution of θ. The posterior is
the object of interest for Bayesian inference.
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Posteriors and Subjective Uncertainty

Posterior distributions are a full characterization of our subjective
uncertainty about θ after looking at data.

It contains everything we need for making inferences about the
parameters.

Examples:
◮ The posterior probability that a regression coefficient is positive,

negative, or lies in a particular interval
◮ The posterior probability that a subject belongs to a particular latent

class
◮ The posterior probability that a hypothesis is true
◮ The posterior probabilities that a particular statistical model is true

model among a family of statistical models
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Posteriors and Subjective Uncertainty

Note that all of these examples are questions that cannot be directly
answered under the frequentist paradigm.

Allowing uncertainty to exist with the parameter allows for a more
natural interpretation of inference about the parameters.

Interpretation is intuitive - we can make the probabilistic claims that
we want with confidence intervals and p-values.

Repeated sampling is not necessary for this interpretation. Everything
can be interpreted with respect to the observed sample.

There is a cost! We have to be very explicit about what assumptions
we’re making. This is both a good and bad thing.
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Conditional Probability

Let A and B be events where P(A) > 0 and P(B) > 0.

The conditional probability of A given B occurs is

P(A|B) =
P(A ∩ B)

P(B)

Multiplication Rule:

P(A,B) = P(A|B)P(B) = P(B |A)P(A)

Law of Total Probability:

P(B) = P(B |A)P(A) + P(B | ∼ A)P(∼ A)
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Bayes theorem

From these rules of probability, we can derive Bayes Law:

P(A|B) =
P(B |A)P(A)

P(B)

Assume A and B follow probability distributions. In the discrete case:

P(A|B) =
P(B |A)P(A)∑
A

P(B |A)P(A)

In the continuous case:

P(A|B) =
P(B |A)P(A)

∞∫
−∞

P(B |A)P(A)dA
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Bayes theorem for Data

Bayes theorem is always true and can be applied to arbitrarily
complex situations.

We want to estimate the posterior distribution of θ given Y , P(θ|Y ).

Applying Bayes theorem:

P(θ|Y ) =
P(Y |θ)P(θ)

P(Y )
=

P(Y |θ)P(θ)
∞∫

−∞

P(Y |θ)P(θ)dθ

In words:

Posterior =
Likelihood × Prior

Evidence
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Likelihood

The part of this formula that integrates data is the likelihood.

Make an assumption about the data generating process of the
observed data (i.e. P(Y |θ) ∼ PDF (.)).

Define Y as a sample of size N from the population of interest,
yi ∀ i ∈ (1,N)

If we assume yi is an i.i.d sample, then

P(Y |θ) =
N∏

i=1

P(yi |θ)

Bayesian methods are very similar to likelihood estimation. This will
be seen more explicitly later.
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Priors

The second part of the Bayesian formula.

P(θ) is a distribution that quantifies out a priori beliefs about θ.

Let θ be the probability that I flip a coin and it turns up heads. I
believe there’s a strong chance the coin is fair and θ = .5. I can
define my prior distribution on θ as:

P(θ) ∼ Beta(100, 100)
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Priors
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Priors

The selected prior should quantify your prior beliefs about the value
of θ.

Sometimes, this can be elicited via previous research or experts.

Most of the time, however, this is selected to be mathematically
convenient and/or diffuse.

We’ll discuss this more later.
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Marginal Likelihood

The final part of the formula is the model evidence or marginal
likelihood, P(Y ).

Marginalize out the prior to know how well the data is described by
the model.

Used for nested and non-nested model comparison.

Often very difficult to calculate analytically.

P(Y ) is a normalizing constant that scales the posterior distribution.

While the numerator is always a function of θ, the denominator is
never a function of θ.
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Back to the Motivating Example (Finally)

We observe N different groups play the coin game. We recorded the
N outcomes - yi ∈ (0, 1).

Each outcome is and independent and identically distributed draw
from a Bernoulli distribution:

P(yi |θ) = θyi (1− θ)1−yi

We want to find the posterior distribution of θ given N samples.

θ must be between 0 and 1. Let P(θ) ∼ Unif (0, 1).

P(θ) = 1

Let’s find the posterior distribution of θ.
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Example Likelihood

Our N samples are i.i.d draws from a Bernoulli distribution.

Likelihood:

P(Y |θ) =
N∏

i=1

P(yi |θ) =
N∏

i=1

θyi (1− θ)1−yi = θ
∑

yi (1− θ)N−

∑
yi
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Example Posterior

Using Bayes theorem, the posterior is:

P(θ|Y ) =
θ
∑

yi (1− θ)N−

∑
yi

1∫
0

θ
∑

yi (1− θ)N−

∑
yidθ

This integral is hard to solve. Fortunately, this is a well known
integral with a known solution:

1∫

0

θ
∑

yi (1− θ)N−

∑
yidθ =

Γ(
∑

yi + 1)Γ(N −∑ yi + 1)

Γ(N + 2)

which is the Beta function - B (
∑

yi + 1,N −∑ yi + 1)
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Example Posterior

This is a known distribution!

P(θ|Y ) ∼ Beta
(∑

yi + 1,N −
∑

yi + 1
)

This isn’t a convenient coincidence.

This is due to conjugacy of the prior.
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Conjugate Priors

Let the likelihood have a known distribution - P(Y |θ) ∼ f (Y ; θ)

A conjugate prior is a distribution, P(θ) ∼ g(θ; .), s.t.:

g(θ;Y , .) =
f (Y ; θ)g(θ; .)

∞∫
∞

f (Y ; θ)g(θ; .)dθ

In words, the posterior has the same distributional form as the prior.

This is really important! Guarantees that the posterior has a known
form. Math becomes much easier.

All distributions in the exponential family have a conjugate prior.

Kevin McAlister (University of Michigan) Introduction to Bayesian Statistics November 13, 2017 31 / 91



The Bayesian Mantra

In the example, we saw that θ was only involved in the numerator of
the posterior.

The denominator is always a constant.

Using some algebra:

∞∫

−∞

P(Y |θ)P(θ)dθ = P(Y )

The numerator is simply an unscaled probability distribution.

We really don’t need to calculate the marginal likelihood to
characterize the posterior.

This leads to the ”Bayesian mantra”:

Posterior ∝ Likelihood × Prior
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What does the prior really do?

This statement of the posterior makes the role of the prior very clear.

The posterior is a compromise between the information learned from
the data and our prior beliefs.

The posterior can be sensitive to prior choice:
1 If the location of the prior and the likelihood agree, then there is little

influence.
2 If the location of the prior and the likelihood are different, then the

prior is influential.
3 If the variance of the prior is much lower than the variance of the

likelihood, then the prior choice dominates the posterior.
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Coin Example Revisited

Let’s revisit the coin example.

P(Y |θ) = θ
∑

yi (1− θ)N−

∑
yi

The conjugate prior for the binomial distribution is the beta
distribution - P(θ) ∼ Beta(α, β).

P(θ|α, β) = 1

B(α, β)
θα−1(1− θ)β−1

Let’s find the posterior for θ given an arbitrary beta prior

Kevin McAlister (University of Michigan) Introduction to Bayesian Statistics November 13, 2017 34 / 91



Coin Example Revisited

The prior is conjugate, so we know that the posterior is beta
distributed.

P(θ|Y ) ∝ 1

B(α, β)
θ
∑

yi (1− θ)N−

∑
yiθα−1(1− θ)β−1

P(θ|Y ) ∝ θ
∑

yi (1− θ)N−

∑
yiθα−1(1− θ)β−1

P(θ|Y ) ∝ θ
∑

yi+α−1(1− θ)N+β−
∑

yi−1

The posterior is

P(θ|Y ) ∼ Beta
(∑

yi + α,N −
∑

yi + β
)
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Coin Example Revisited
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Coin Example Revisited
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Coin Example Revisited
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Coin Example Revisited
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Coin Example Revisited
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Coin Example Revisited
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Consistency and Frequentist Duality

For most posterior distributions, as N → ∞, the likelihood completely
dominates the prior and prior specification doesn’t matter.

As N → ∞, P(θ|Y )
D−→ N(θ, f (1/N)).

The mean of the posterior distribution converges to the maximum
likelihood estimate of θ as N gets large, regardless of prior
distribution.

This speaks to a duality between frequentist and Bayesian estimates
in larger samples.

A larger notion that there are commonalities between the two
approaches.

Use whichever approach makes the most sense when N is large.
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Point Estimators and Bayes Loss

Sometimes point estimators are useful.

Minimize Bayes loss using loss functions.

Quadratic Loss → Posterior Mean

Absolute Loss → Posterior Median

All-or-Nothing Loss → Posterior Mode

Point estimators at the mode are very interesting and specific to the
Bayesian approach - if I had to make a best guess, it would be the
highest density point.
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Credible Intervals

The big advantage of Bayesian inference is the ability to make
probabilistic claims about θ.

Define a α% credible interval [l , u] as:

u∫

l

P(θ|Y )dθ = α/100

We can interpret this interval as we want to interpret confidence
intervals - the probability that θ falls in this interval is α.

A reasonable interval to report is the smallest interval that covers α%
of the posterior density. This is called the highest posterior density
interval.

There is no rule that says that this interval has to be continuous.
This method allows meaningful inference for multimodal outcomes.
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Bayesian Model Comparison

Another critical distinction between frequentist and Bayesian
approaches is the hypothesis space.

Frequentists assume that the hypothesis space is infinite and test
against a known, ”uninteresting” hypothesis. Rejecting the null lets
us know that the parameter of interest is ”interesting”.

Bayesians assume that the hypothesis space is finite. By the
normalization result, Bayesians define the hypothesis space as a
discrete number of possibilities and calculate the probability that each
hypothesis is correct.

Assume that each model tests a unique hypothesis. We can compare
models and select the best one given the data.

The marginal likelihood, P(X ), is used as the assessment of the
quality of a model. As P(X ) increases, the model does a better job of
fitting the data.

The key here is that P(X ) marginalizes the estimated parameters
over the priors.
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Bayesian Model Comparison

Model comparison utilizes a Bayes Factor. When comparing two
models (M1 and M2), the Bayes Factor is:

BF1:2 =
P(X |M1)

P(X |M2)

A Bayes Factor greater than 1 favors M1. A bigger value has a higher
probability of being correct.

Given that a Bayes Factor expresses the odds that M1 is better than
M2, we can extend the Bayes Factor to probabilities.

Similarly, we can do multiple pairwise comparisons and compute
probabilities for more than 2 models.
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Bayesian Advantages

Bayesian concepts (posterior prob of the null) are arguably easier to
interpret than frequentist ideas (p-value)

We can incorporate scientific knowledge via the prior

Excellent at quantifying uncertainty in complex problems

In some cases the computing is easier

Provides a framework to incorporate data/information from multiple
sources
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Bayesian Disadvantages

Picking a prior is subjective

Procedures with frequentist properties are desirable

Computing can be slow or unstable for hard problems

Less common/familiar

Kevin McAlister (University of Michigan) Introduction to Bayesian Statistics November 13, 2017 48 / 91



The Evangelizing Slide

Bayesian inference provides a lot of niceties for statistical analysis:
◮ Provides probabilities for hypotheses
◮ Simple interpretation
◮ Explicit assumptions
◮ Marginalizes nuisance parameters
◮ Model comparisons for more than 2 nested or non-nested models
◮ Automatic overfitting penalties via Occam’s factors
◮ Valid for all sample sizes
◮ Handles multimodality
◮ Accounts for prior information and tests
◮ Does not suffer from early stopping of experiments
◮ Provides consistent, calibrated estimators
◮ Good coverage (frequently better than frequentist analogues)
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Some Applications

Let’s move on to some problems.

Like we’ve previously discussed, we want to use conjugate priors when
at all possible.

In survival analysis, the exponential distribution is frequently used to
model how long an object lives.
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Some Applications

Let’s assume that we have N observations that follow an exponential
distribution:

P(xi |λ) = λ exp[−λxi ]

where
λ > 0 & xi > 0

We want to infer about the value of λ.

The conjugate prior for the exponential distribution is the Gamma
distribution:

P(λ) =
βα

Γ(α)
λα−1 exp[−βλ]

What form will the posterior of λ take?
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Some Applications

Recall that we’re after:

P(λ|x) ∝ P(x |λ)P(λ)

The likelihood is pretty simple:

P(x |λ) =
∏

P(xi |λ) = λN exp
[
−λ
∑

xi

]

We can combine the likelihood and the prior by matching kernels.

P(λ|x) ∝ λN exp
[
−λ
∑

xi

]
λα−1 exp[−βλ]

P(λ|x) ∝ λN+α−1 exp
[
−λ
(
β +

∑
xi

)]
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Some Applications

Because this is a conjugate prior, we know that the posterior will
follow a Gamma distribution.

The kernel of the Gamma distribution has the form:

yα−1 exp[−βy ]

The kernel of our posterior has this form!

P(λ|x) ∼ Gamma
(
N + α,

∑
xi + β

)
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Some Applications

Another less familiar one.

Bayesian and maximum likelihood aren’t all that different
mechanically.

Classic ML problems have close Bayesian analogues.

N observations from uniform distribution ∼ Unif (0, θ).

P(xi |θ) =
1

θ

Uniform is not in exponential family, but still has a conjugate prior.

Pareto distribution:

P(θ) =
kvk0
θk+1

where
θ ≥ v0 ; 0 o.w .

Kevin McAlister (University of Michigan) Introduction to Bayesian Statistics November 13, 2017 54 / 91



Some Applications

Why does Pareto work here?

θ must be greater than or equal to the sample maximum.

MLE for θ is sample maximum, so there is similarity.

P(x |θ) = 1

θN

P(θ|x) ∝ 1

θN
kvk0
θk+1

Look at the kernel:

P(x |θ) ∝ 1

θN+k+1

Conjugate, so posterior is Pareto:

P(θ|x) = Pareto(k∗ = N + k , v∗0 = max(x))
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The Important One

The previous applications actually occur in practice.

The most common application is on the normal distribution.

Recall that the normal distribution is a two-parameter member of the
exponential family:

P(x |µ, σ2) =
1√
2πσ2

exp

[ −1

2σ2
(x − µ)2

]

With the normal, we can perform inference on µ and σ2 separate or
together.
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Normal with Known Variance

To start, let’s look at a normal distribution with known variance.

Looking for posterior of µ.

µ should take values on full support of distribution.

Put a normal prior on µ.
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Normal Likelihood

A key computation is the likelihood for a normal r.v.

Start by expanding exponential:

(
1√
2πσ2

)
exp

[ −1

2σ2
(x2i − 2µxi + µ2)

]

Now multiply:

P(x |µ) =
( −1√

2πσ2

)N

exp

[ −1

2σ2

(∑
x2i − 2µ

∑
xi + Nµ2

)]
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Prior on µ

Define a normal prior on µ:

P(µ) =
1√
2πσ2

0

exp

[−1

2σ2
0

(µ− µ0)
2

]

Expanded:

P(µ) =
1√
2πσ2

0

exp

[ −1

2σ2
0

(µ2 − 2µµ0 + µ2
0)

]

Match kernels:

P(x |µ)P(µ) ∝ exp

[ −1

2σ2

(∑
x2i − 2µ

∑
xi + Nµ2

)
+

−1

2σ2
0

(µ2 − 2µµ0 + µ2
0)

]
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Completing the Square for Normals

The normal is the conjugate prior for the mean. So, we know that the
posterior for the mean will be normal.

Consider the kernel of a general normal distribution:

exp

[
− x2

2σ2
+

µx

σ2
− µ2

2σ2

]
= exp

[
Ax2 + bx + c

]

We can solve for µ and σ2 in terms of A and B :

− 1

2A
= σ2 ; − b

2A
= µ

If we can get the posterior kernel in this form, then we know the
mean and variance of the distribution.
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Posterior for µ

Recall that the r.v. in our posterior is µ. So, we want to combine the
kernels s.t.:

exp[Aµ2 + bµ+ c]

We’ll do this on the board because I don’t feel like typing all this out.

P(µ|x) ∼ N(µ∗, σ2∗)

where

σ2∗ =

(
N

σ2
− 1

σ2
0

)
−1

and

µ∗ =

∑
xi

σ2 + µ0

σ2
0

(σ2∗)−1
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Posterior for σ2

Now let’s assume that we know µ and we want to infer the value of
σ2.

What is the conjugate prior for σ2?

Recall - what is the asymptotic distribution of variance?

Variance is constrained to be greater than 0.
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Posterior for σ2

Variance follows an inverse chi-square distribution.

Chi-square is a special case of the gamma distribution.

While inverse gamma is a distribution, it is often easier to work with
precision (τ) - the inverse of variance.

τ follows a gamma distribution.

Gamma is conjugate to the precision of a normal distribution.
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Posterior for τ

Express the normal likelihood in terms of τ :

P(x |τ) =
(
−
√

τ

2π

)N

exp
[
−τ

2

(∑
x2i − 2µ

∑
xi + Nµ2

)]

P(x |τ) =
(
−
√

1

2π

)N

τ
N
2 exp

[
τ
−
(∑

x2i − 2µ
∑

xi + Nµ2
)

2

]

The prior on τ :

P(τ) =
βα

Γ(α)
τα−1 exp[−βτ ]
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Posterior for τ

Match kernels:

P(τ |x) = τ
N
2
+α−1 exp

[
−τ

(
β +

∑
(xi − µ)2

2

)]

The posterior for τ is:

P(τ |µ) = Gamma

(
N

2
+ α, β +

∑
(xi − µ)2

2

)
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Bayes and MLE via Improper Priors

The mean of the Gamma distribution is α
β
.

Drive α → 0 and β → 0 in the posterior of τ . What is the mean of
the posterior distribution?

MLE can be seen as equivalent to Bayes when we use a truly uniform
prior and minimize MSE.

However, this is a degenerate distinction for continuous distributions
with infinite support.

What is the uniform prior on [0,∞)?

P(x) = 0 ∀ x but
∫
x

P(x)dx = 1.

Sometimes an improper prior doesn’t matter, like the posterior for τ .
However, it can matter if we want to do inference on the marginal
likelihood or posterior predictive (more to come!).
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Simultaneous Inference of τ and µ

In general, we want to infer about both τ and µ.

Conditional chain rule:

P(a, b|x) ∝ P(x |a, b)P(a|b)P(b)

If a and b are independent:

P(a, b|x) ∝ P(x |a, b)P(a)P(b)

Joint posterior:

P(µ, τ |x) ∝ P(x |µ, τ)P(µ|τ)P(τ)
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Simultaneous Inference of τ and µ

Simultaneous inference here requires an assumption that is a slightly
weaker version of i.i.d. draws called exchangeability.

In short, exchangeability essentially boils down to a thought
experiment on labelling.

Label N observations of x x1, x2, x3, ..., xN . Randomly permute these
labels. If the results are the same, then the sample is exchangeable.

When are things not exchangeable? Time series, panel data, etc.

De Finetti’s Theorem: exchangeable observations are conditionally
independent given some latent variable to which an epistemic
probability distribution would then be assigned.
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Simultaneous Inference of τ and µ

We already know the likelihood component of the normal model.

We also know a prior on τ .

Here, we need to define a prior on µ given τ , a normal with mean and
precision:

P(µ|τ) = N(µ0, κ0τ)

We’ll come back to why this works in a minute.
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Simultaneous Inference of τ and µ

We use the same recipe as before:

P(µ, τ |x) ∝ P(x |µ, τ)P(µ|τ)P(τ)

This math is kind of tedious and we should already have some
intuition as to what the posterior distribution will look like. (Also, the
result is kind of a letdown).

What will be the form of P(x |µ|τ)P(µ|τ)?
What happens when we multiply this by the prior on τ?
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Simultaneous Inference of τ and µ

The posterior has a normal-gamma distribution.

This distribution is exactly what it sounds like - a normal distribution
multiplied by a gamma distribution with parameters µ∗, κ∗, α∗, and
β∗:

µ∗ =
κ0µ0 + nx̄

κ0 + N

κ∗ = κ0 + n

α∗ = α0 +
N

2

β∗ = β0 +
1

2

N∑

i=1

(xi − x̄)2 +
κ0N(x̄ − µ0)

2

2(κ0 + n)
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Simultaneous Inference of τ and µ

The math works out here, but takes a little longer than we have in
this talk.

This forms the joint posterior, P(µ, τ |x).
This is great, but we care more about the marginal posterior. What is
the marginal density of the posterior of µ and τ?

Integrate out the other parameter to get the marginal posterior.

Once again, more math than we should do here.

Any guesses about the marginal posterior forms?
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Simultaneous Inference of τ and µ

P(τ |x) ∼ Gamma(α∗, β∗)

P(µ|x) ∼ T2α∗

(
µ∗,

β∗

α∗κ∗

)
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Simultaneous Inference of τ and µ

In the Bayesian paradigm, this is how the t-distribution appears -
integrating out an unknown variance in a normal distribution.

The variance is compounded into the uncertainty about the mean of
the distribution.

Let’s go back to the prior on µ, P(µ|τ). Here, we are making an
appeal to the fact that the variance of the distribution of the mean is
a function of the variance of the data generating process.

In short, there’s a CLT like argument being made here.
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Predictive Distributions and Marginal Likelihoods

Marginalizing is a key Bayesian computation.

Marginalizing out parameters allows us to get distributions that we
need for inference.

What happens if we marginalize out all the parameters?

P(x) =

∫

Θ

P(x |θ)P(θ)dθ

Does this look familiar?
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Predictive Distributions and Marginal Likelihoods

Assume that we have observed no data, but have the DGP and the
prior forms.

What is the probability of observing some value of x without any
data?

This is the prior predictive distribution.

Think about what this implies - prior to collecting data, what is the
probability distribution of x̃?
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Predictive Distributions and Marginal Likelihoods

What about after we observe data, x?

P(x̃ |x) =
∫

Θ

P(x̃ |θ)P(θ|x)dθ

This is called the posterior predictive distribution - after observing
data, what is the probability distribution of x̃?
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Predictive Distributions and Marginal Likelihoods

What about after we observe data, x?

P(x̃ |x) =
∫

Θ

P(x̃ |θ)P(θ|x)dθ

This is called the posterior predictive distribution - after observing
data, what is the probability distribution of x̃?
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Predictive Distributions and Marginal Likelihoods

Why does any of this matter?

We can answer questions about how well our model fits the data a

priori and a posteriori.

Using the posterior predictive distribution, we can examine how well
the posterior distribution matches the observed distribution of the
data - posterior predictive checks. This can also be used a modeling
tool. Much, much more to come on this later.

A more common question - conditional on our model choice, what is
the probability of our data?
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Predictive Distributions and Marginal Likelihoods

Up until now, we’ve ignored the denominator of the Bayes machinery.

This denominator is called the marginal likelihood. This tells us the
probability that we would have observed our data given our prior
beliefs.

This is related to the prior predictive distribution in the following way
for i.i.d. data:

N∏

i=1

∫

Θ

P(xi |θ)P(θ|ξ)dθ

where ξ are the prior hyperparameters.
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Predictive Distributions and Marginal Likelihoods

On its own, this quantity (it’s a constant, remember?) isn’t too
informative.

However, when compared amongst models, it tells us which model is
probabilistically more likely!

Note that there are no assumptions about nesting, distribution of the
ratio, etc.

Consider two separate models M1 and M2 (on potentially different
random variables), define the Bayes factor as:

BF1:2 = log10




N∏
i=1

∫
Θ

P(xi |θ)P(θ|M1)dθ

N∏
i=1

∫
Θ

P(yi |θ)P(θ|M2)dθ
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Predictive Distributions and Marginal Likelihoods

When the Bayes factor is negative, there is support for M2.

When the Bayes factor is positive, there is support for M1.

Differences in magnitude reflect differences in our belief that one
model is better than the other!
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Predictive Distributions and Marginal Likelihoods

Estimating this quantity is often an incredibly difficult task.

Approximate it or use numerical methods.

More to come.
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Multivariate Models

Many distributions that we commonly think about have multivariate
analogues.

Not only is there variance to consider, but also covariance between
observations.

Let xi be a random vector. How do we model this?

A common approach is the multivariate normal distribution.
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The Multivariate Normal Distribution

The density:

P(xi |µ,Σ) =
1√
(2π)k

1√
|Σ|

exp

[
−1

2
(xi − µ)′Σ−1(xi − µ)

]

where k is the length of the random vector. µ is a k × 1 vector of
means and Σ is the associated k × k covariance matrix.
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The Multivariate Normal Distribution

Inference on the multivariate normal model is very similar to inference
with a regular normal.

As before, we’re mostly interested in the case where both µ and Σ are
unknown.

Any guesses about the conjugate prior for µ?

What about Σ−1?
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The Multivariate Normal Distribution

As you probably guessed, the conjugate prior for µ is a multivariate
normal.

As you probably didn’t guess, the conjugate prior for Σ−1 is a Wishart

distribution.

What is a Wishart distribution?

Recall that variance is constrained to be greater than 0 and
covariance has no constraints.

Imagine a multivariate distribution that has gamma densities on the
diagonal and normal densities everywhere else. That’s a Wishart
distribution.

Hard to picture, but this is the conjugate prior to the covariance
matrix in the multivariate normal problem.
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The Multivariate Normal Distribution

Just like in all of life, our time in this room is limited, so we’re not
going to go much further with this example.

Unsurprisingly, the math is possible, but gets pretty tedious.

Really, this model is just a bridge to the world of applied Bayesian
statistics.

Kevin McAlister (University of Michigan) Introduction to Bayesian Statistics November 13, 2017 88 / 91



Bayesian Linear Regression

Recall the linear regression model:

yi ∼ N(xiβ,V)

where β is a p-vector of regression coefficients.

How do we estimate β and V in a Bayesian way?
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Bayesian Linear Regression

Once again, the same machinery:

P(β,V|x , y) ∝ P(y |β,V, x)P(β|V)P(V)

P(y |β, σ2, x) ∼
N∏

i=1

Np(xiβ,V)

P(β|V) ∼ Np(β0,V⊙ R0)

P(V) ∼ W−1(ν0, ι0)
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Bayesian Linear Regression

This is starting to get pretty difficult.

What about if we have a binary dependent variable? Or a count? Or
we believe that V is heteroskedastic?

There are closed form solutions for some of these problems. But, the
math gets too hard very quickly.

Alas, all is not lost.

Computers + Smart People = Solutions

MCMC is the practical solution.
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