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Disagreement and Dimensionality: A Varying Dimensions Approach
to Roll Call Scaling in the U.S. Congress
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T he dimensionality of ideal points is an aspect of roll call scaling which has received
significant attention due to its impact on both substantive and spatial interpretations
of estimates. In this article, I find that previous evidence for unidimensional ideal

points is a product of the Scree testing procedure. I propose a new varying dimensions model
of legislative voting and a corresponding Bayesian nonparametric estimation procedure
(BPIRT) that allows for probabilistic inference on the number of dimensions. Using this
approach, I show that there is strong evidence for multidimensional ideal points in the U.S.
Congress and that using only a single dimension misses much of the disagreement that
occurs within parties. Using BPIRT, I reexamine theories of U.S. legislative voting and find
that empirical evidence for these models is conditional on unidimensionality. This article
provides a framework for new examinations into the role of multidimensionality in studies of
legislative behavior.
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Kevin McAlister

INTRODUCTION

Studies of legislative behavior focus upon the relationship between legislative preferences, institutional
structure, and legislative outcomes. A common method used to better understand these relationships
utilizes scaling models that uncover the ideal points of legislators. While there are many approaches to
uncovering the ideal points of legislators, by far the most common approach uses the outcomes from
the various roll call votes that are cast by members of Congress. Roll call scaling techniques such as
NOMINATE (Poole and Rosenthal 1997) and its Bayesian analogue (Clinton et al. 2004) seek to project
roll call data into a low-dimensional policy space that captures the complexities of how members of
Congress make vote decisions. The ideal points can then be used to make comparisons of various
behaviors between different members of the legislatures, such as the role of parties (Aldrich and Rohde
2000; Cox and Poole 2002; Cox and McCubbins 2005), influences within and between branches of the
U.S. government (Binder 1999; Krehbiel 1998), and other features of the legislative institution.1

Ideal point models require assumptions that have implications for the interpretation of the estimated
quantities. One such assumption is the dimensionality of the latent space. Assuming a unidimensional
ideal point, legislators behave predictably and rational choice models can provide simple explanations of
how legislators make policy proposals and vote choices under the rules of the institution (Krehbiel 1998;
Cox and McCubbins 2005). On the other hand, multidimensional ideal points create an environment
where legislators behave in a more nuanced manner - legislative behavior is conditional on the context
of the vote and there are few guarantees of predictable outcomes (McKelvey 1976; Schofield 1978;
Shepsle 1978). The choice of dimensionality also has strong substantive implications (Harbridge 2015;
Lee 2009).

In most recent studies that leverage unidimensional estimates of ideal points, empirical justification
for this assumption is given by referencing the "Unidimensional Congress" arguments of Poole and
Rosenthal (2011) - across issue areas within an analyzed period of the U.S. Congress, little improvement
to the overall fit of the roll call scaling model can be made by including more than one dimension.
However, many works show evidence for multidimensionality in U.S. Congressional roll call voting;
there is strong evidence that certain bundles of votes map to different dimensions and less aggregated
analysis of roll call votes reveals this heterogeneity (Heckman and Snyder Jr 1996; Roberts et al. 2016;
Smith 2007; Hurwitz 2001; Crespin and Rohde 2010; Norton 1999; Bateman et al. 2017).

If U.S. Congressional voting appears to be multidimensional and linked to specific vote topics in less
aggregated studies of roll call voting, why does aggregate roll call scaling show strong evidence for only
a single liberal-conservative dimension? In this paper, I seek to solve this puzzle. I present a method of
roll call scaling that allows for aggregate-level summaries of legislative decision making while also
allowing for examinations of multidimensionality at the bill-episode level. Leveraging work related to
from Aldrich et al. (2014) and Roberts et al. (2016), I contend that evidence for the low-dimensional
conjecture is due to the statistical tests used to assess inclusion of new dimensions. To address this
problem, I present a new spatial model in which a voter makes vote decisions using both the positions
of alternatives within the policy space and a vote-specific bundle of dimensions in which those policy
positions exist. The corresponding empirical model allows for rigorous statistical inference related
to the overall dimensionality of the ideal points and identification of the dimensions of the policy

1There has been significant work in the area of roll call scaling and ideal point estimation for the U.S. Congress
beyond these two models. Lauderdale and Herzog (2016), Tausanovitch and Warshaw (2017), Bonica (2014),
Ramey (2016), Jessee and Malhotra (2010), and Tahk (2018) are just a few of the models proposed in recent
literature.
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Disagreement and Dimensionality

space associated with each vote. Unlike previous approaches, this method accurately estimates the
dimensionality of the ideal point space even under high levels of party bloc voting. Similarly, the ideal
points and vote-level estimates of dimensionality allow for new tests related to theories of legislative
behavior that properly take vote-level dimensionality into account. Given that the vast majority of
empirical tests related to legislative decision making use unidimensional NOMINATE scores, the
estimates achieved from this new model allow for a finer examination of the role of dimensionality in
many important theories of U.S. legislative behavior.

Overall, I make several important contributions to the literature in this article. Methodologically, I
present a new spatial model of voting that has an explicit empirical analogue under assumptions about
utility structures. This model uses novel advancements in the field of Bayesian nonparametrics related
to estimating the infinite latent feature model (Paisley and Carin 2009; Knowles and Ghahramani
2011) to address the question of dimensionality in aggregate sets of roll call votes by simultaneously
estimating ideal points and dimensionality. Substantively, I analyze the entire history of the U.S. House
and U.S. Senate (1st − 115th sessions) and show that there is strong evidence of multidimensional
voting through the history of the U.S. Congress. In line with many of the conclusions by Heckman
and Snyder Jr (1996), I find that votes tend to bundle based on topic and these votes share similar
multidimensional vote patterns. In turn, this allows for identification of key issues that split members
of Congress, both within and across parties. This work produces a new set of ideal points across U.S.
Congressional history that should provide a starting point for further work related to topic-level voting
in the U.S. legislative body. Finally, I apply the estimates from the new roll call scaling method to two
specific theories related to U.S. Congressional voting: the pivotal voter model (Krehbiel 1998) and the
party cartel model (Cox and McCubbins 2005). I show that much of the empirical evidence that exists
for these models changes when dimensionality is properly accounted for in empirical tests of these
theories. This analysis is just the starting point for potentially reassessing many other predictions made
by models of U.S. legislative voting under conditions of multidimensionality.

A SPATIAL MODEL OF ROLL CALL VOTING

For a legislature, assume there are N voting members that cast P votes over the course of time analyzed.
For any given vote j ∈ (1, P), legislator i ∈ (1, N) must choose between two alternatives: to approve
the proposed alternative (A j) or to reject the proposed alternative (S j). Behavior in this legislature is
assumed to be describable in a K-dimensional policy space - all votes that are made by legislator i can
be described by the K-dimensional point locations of A j and S j within the space and a K-dimensional
ideal point, ωi, which encapsulates the policy preferences of legislator i.

A legislator must choose whether to vote for A j or S j . Using a utility maximization model that
assumes quadratic loss in distance from her ideal point, assume that she chooses the alternative which
grants the highest utility:

Ui(A j) = −‖ωi − A j ‖2 + ηi, j

Ui(S j) = −‖ωi − S j ‖2 + νi, j
(1)

where ηi, j and νi, j are stochastic elements of the utility functions. This model is completely specified if
a known structure is placed on ηi, j and νi, j (Heckman and Snyder Jr 1996; Poole and Rosenthal 1997;
Clinton et al. 2004).
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Kevin McAlister

Let Y be a matrix of roll call votes and yi, j be the vote choice that legislator i makes on proposal j :
yi, j = 1 if legislator i votes "Yea" on vote j and yi, j = 0 if she casts a "Nay" vote. Given the model
construction, the probability that legislator i votes for A j can represented as:

P(yi, j = 1) = Ξ(λ′jωi − α j) (2)

where Ξ(·) is the CDF associated with the chosen error structure, α j =
A′jA j−S′jS j

σ2
j

, and λ j =
2(A j−S j )

σ2
j

.

This construction admits a corresponding statistical model that allows for estimation of the structural
parameters α and Λ and the latent variables, Ω. Assuming the errors are independent and identically
distributed, a likelihood function can be derived:

L(α,Λ,Ω|Y ) =
N∏

i=1

P∏
j=1
Ξ(λ′jωi − α j)yi, j ×

(
1 − Ξ(λ′jωi − α j)

)1−yi, j
(3)

Bayesian implementations of this model place priors on all of the structural parameters and estimation
proceeds using Markov Chain Monte Carlo methods (Clinton et al. 2004). With other minor theoretical
changes, this model is equivalent to the NOMINATE procedure (Poole and Rosenthal 1997).
Under this specification, a choice of the number of dimensions, K , leads to fully tractable model

that can be estimated. Currently, this choice is made by performing a Scree test (Cattell 1966). The
spirit of the Scree test revolves around estimating the latent variable model under a number of different
assumptions for the number of dimensions and plotting the fit metric to find the "elbow" in the plot.
Once adding a new dimension no longer adds "enough" value to the fit metric, then no new dimensions
are added. Typically, the choice of fit metric revolves around the proportion of votes correctly classified
under a model: aggregate proportion reduction in error (Poole and Rosenthal 2011) or marginal
proportion reduction in error (Roberts et al. 2016).

Regardless of the choice of metric, I contend that the Scree test presents many problems for inference.
By its very nature, the Scree test is inherently subjective; the choice of how much reduction in error is
enough to include a new dimension is subjective and can lead to biases in the number of dimensions
chosen. For example, the Scree test cannot detect small improvements in model fit that are due to adding
dimensions that only contribute to a few votes. Rather, the Scree test says that the model improvement
over the aggregated set of roll call votes is small and the dimension should not be included. This feature
of the Scree test is not ideal as there is an entire body of the literature which shows that dimensions
in roll call voting appear at the vote-topic level and important dimensions can appear infrequently
(Roberts et al. 2016).

Along the same lines, Aldrich et al. (2014) and Roberts et al. (2016) point to the high frequency of
votes that occur along party lines as a problem for current dimensionality testing procedures. When
many votes are explained by party lines, the perceived influence of party can be much higher than what
is actually present within the data. Given that there is often correlation between vote choices in specific
policy domains and party membership, party bloc voting can appear to account for all of the explainable
variation within roll call voting data sets when many dimensions are truly influencing decisions. This
result is corroborated by the finding that scaling within parties reveals many dimensions even when
using Scree tests as the decision making criterion (Aldrich et al. 2014). Similarly, multidimensionality
is highly apparent when dimensionality is tested within and across topically similar bill-episodes
(Roberts et al. 2016).

These findings point to a couple of features that a roll call scaling method that accurately uncovers
dimensionality should have:
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Disagreement and Dimensionality

1. Dimensionality should be tested under distributional assumptions. In turn, probabilistic tests of
whether or not a dimension provides a non-zero improvement to the model under an assumption
about what constitutes random noise can be performed.

2. Dimensionality should be tested at the vote level. Each vote should be allowed to draw on a
different set of dimensions, if necessary. The aggregated set of vote-level dimensionalities then
dictates the dimensionality of the ideal point. However, each set of vote-level dimensions should
be subject to overfitting penalties in order to estimate substantively useful parameters that account
for both vote-level and aggregate behavior of legislators over the course of time analyzed.

A roll call scaling method that meets these conditions should provide an accurate representation of the
dimensionality of the data while also reducing the dimensionality of the data to something useful for
further examination of aggregate legislative voting behavior.

A ROLL CALL SCALING MODEL WITH VARYING DIMENSIONS

A Spatial Model of Voting with Varying Dimensions

To address the above conditions for accurately estimating dimensionality, I propose a new roll call
scaling model with varying dimensions. As before, a legislator must choose to vote for A j or S j . She
chooses to cast a vote for the alternative that maximizes her utility under a quadratic loss function such
that:

Ui(A j) = −‖r j(ωi − A j)‖2 + ηi, j

Ui(S j) = −‖r j(ωi − S j)‖2 + νi, j
(4)

Under this specification, the new addition is the binary vector r j . r j is a vector of length K where
r j,k = 1 if she considers dimension k ∈ (1, ...,K) in vote j. On the other hand, r j,k = 0 if she does not
utilize her ideal point on dimension k when making a decision for vote j. Note that r j is assumed to be
globally known to all legislators.

One advantage of this approach is that the length of r j does not need to be explicitly set before
specifying the model. For example, if only dimensions one and three are needed to dictate the utility
function associated with a vote (i.e. r j,1 = 1, r j,2 = 0, r j,3 = 1), then this vector is equivalent to one
where r j,4 = 0, r j,5 = 0, and all subsequent elements of the vector are set to zero. Thus, the vector of
length three and the corresponding vector of infinite length are equivalent. This characteristic of the
binary vector is key to addressing the shortcomings of the standard roll call scaling model.

Placing all of the vote level binary vectors, r j , into a matrix with the number of rows equal to
the number of votes and the number of columns equal to the number of dimensions creates a binary
matrix, R, that dictates the mapping of individual votes to ideal point dimensions. R captures the
dimensionality of the underlying ideal point space across all votes analyzed. Recall that each r j can be
of infinite size, but only the elements equal to one matter for the underlying utility model. Thus, the
dimensionality of the overall space can be modeled as the number of columns in R which have at least
one non-zero element if R has a known probability measure. Similarly, the structure of r j is allowed to
vary across votes - each vote can call on a different set of dimensions to construct the parameters of the
assumed utility calculations that lead to vote decisions.
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As with the standard model, the construction admits a corresponding statistical model. With similar
rearrangement, a likelihood function is determined:

L(α,Λ,Ω, R |Y ) =
N∏

i=1

P∏
j=1
Ξ

(
(r j � λ j)′ωi) − α j

) yi, j × (
1 − Ξ

(
(r j � λ j)′ωi − α j

) )1−yi, j (5)

where � is the Hadamard product of two vectors.2 As with the likelihood function for the standard roll
call scaling model, the likelihood is comprised of the structural parametersΛ and α and the ideal points,
Ω. R is assumed to modify the loadings, Λ. Like the standard model, the parameters of the estimated
statistical model explicitly link back to the formal theoretic foundation where α j =

r j (A′jA j−S′jS j )
σ2
j

and

λ j =
2r j (A j−S j )

σ2
j

.3

The varying dimensions model of voting explicitly adds the two conditions listed previously. First, R
constitutes a new quantity that can be estimated. With distributional assumptions, R can be estimated
with the other structural parameters of the ideal point model to determine the number of dimensions
needed to effectively model the ideal point space. If this choice penalizes against adding many
dimensions, R can dictate a sparse set of dimensions that directly model the aggregate set of roll call
votes. Second, each binary vector, r j , contains a mapping of each vote to some subset of the ideal point
space. This allows each vote to modeled in a potentially different set of dimensions. Again, under
proper distributional assumptions about R, this allows each vote to be modeled as a subset of aggregate
dimensions. However, if only one dimension is needed for the collection of votes, R can be reduced to
estimate only one dimension. All in all, this model of voting allows for the dimensionality of the latent
space to be estimated simultaneous to the structural parameters of the ideal point model.

Estimating the Roll Call Scaling Model with Varying Dimensions
Using equation (5) as a starting point, a Bayesian scaling procedure for binary roll call votes with
varying dimensions can be defined.4 Let X be a continuous latent mapping of the observed roll call
votes Y such that:

xi, j ∼


TN−∞,0((r j � λ j)ωi − α j, 1) if yi, j = 0
TN0,∞((r j � λ j)ωi − α j, 1) if yi, j = 1
N((r j � λ j)ωi − α j, 1) if yi, j is missing

(6)

where TNl,u(µ, σ2) is the truncated normal distribution truncated between l and u. Assuming a probit
structure on the errors and, without loss, an infinite dimension ideal point space, define the varying
dimension roll call scaling model as:

P(yi, j = 1|−) =
∞∫

0

N
(
xi, j ;

∞∑
k=1

r j,kλ j,kωi,k − α j, 1

)
dxi, j (7)

2The standard roll call scaling models is a special case of the varying dimensions version - setting all elements of
R equal to one and fixing K to a known finite value replicates the model of Clinton et al. (2004).
3Like the Bayesian IRT approach of Clinton et al. (2004) and the NOMINATE model, this model assumes that
all voters vote sincerely based on their underlying ideal point. Using a model that ties abstention to strategic
behavior, this assumption could be changed.
4The benefits of approaching the roll call scaling problem under the Bayesian paradigm are well documented. A
thorough discussion of these benefits are presented by Clinton et al. (2004).
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Disagreement and Dimensionality

This voting model shares many parameters with the two-parameter item response model used in
educational testing where λ j is a vector of item discrimination parameters, α j is the item difficulty
parameter, and ωi is a vector of ideal points associated with the vote decisions made by a legislator
(Poole and Rosenthal 1997; Londregan 1999).

Estimating the Binary Matrix

A number of approaches for selecting the appropriate number of dimensions in latent variable models
have appeared in the statistics and social sciences literatures (Kim et al. 2018). However, these
approaches often are developed for the purpose of finding a reduced dimensionality representation
of the covariance matrix and estimation of the structural parameters and item-level differences in
dimensionality are not addressed. I choose to use nonparametric priors on the number of dimensions
and allow them to stochastically vary. These priors have strict probabilistic properties that make
identification and estimation of structural parameters plausible (Bhattacharya et al. 2011).

One Bayesian nonparametric approach which allows probabilistic modeling of both the overall and
vote-level dimensionalities uses the beta process (Paisley and Carin 2009). For a given element of R,
let the prior be:

P(r j,k |π j,k) ∼ Bern(r j,k ; π j,k)
P(π j,k |α j,k, β j,k) ∼ Beta(π j,k ;α j,k, β j,k)

(8)

Letting K → ∞ allows all possible dimensions to be potentially present in R and constitutes a beta
process.

Without further constraint, the model will always find that the optimal number of features is equal to
the number of items - each item is modeled by its own dimension. This outcome is akin to overfitting
in regression and provides a solution that is not useful for summarizing high-dimensional data; the
roll call scaling model needs a sparse estimate of R. Along with other challenges related to fitting an
infinite set of dimensions to a finite set of data, estimation under the beta process prior has proven a
difficult task in the statistics literature.

A marginalized approach exists that allows for a relatively simple sampling scheme in the infinite
limit that prevents against over fitting by allowing the number of dimensions found to scale with the
number of observations and items (Paisley and Carin 2009). Here, the beta-Bernoulli process dictating
the values of the infinite matrix, R, has a prior such that:

P(πk) ∼ Beta
(
πk ;

a
K
,

b(K − 1)
K

)
P(r j,k |πk) ∼ Bern(r j,k ; πk)

(9)

where a and b are hyperparameters and K is arbitrarily large such that:

E[πk |K] ≈ 0 (10)

which induces a sparse estimate of the binary matrix.

The beta process prior of this form constitutes a simple stochastic process. Marginalizing over π, this
process is the two parameter Indian Buffet Process (IBP) (Ghahramani and Griffiths 2006). IBP has
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two notable properties for modeling sparse matrices. First, over the entire set of P votes, the number of
dimensions sampled follows:

P(K+ = h) = Pois ©«h;
P∑

j=1

ab
b + j − 1

ª®¬
E[K+] ≈ O(ln(P))

(11)

where K+ is the number of columns of R with at least one element equal to one. This shows that as P
increases, the number of dimensions that can potentially appear in the latent space increases. However,
the expected number of dimensions is small relative to P and a sparse solution is ensured. On the other
hand, if P is small, then the number of dimensions that can potentially appear in the latent space is also
small. This property ensures that the number of dimensions estimated is supported by the amount of
data present during estimation.

Second, IBP exhibits a "rich get richer" property:

P(r j,k = 1) ∝
−r j,k +

P∑
h=1

rh,k

P + r j,k −
P∑

h=1
rh,k + 1

(12)

As a dimension becomes more popular, the probability that it is sampled in other votes increases. In
turn, features that are not popular are rarely sampled and have a small chance of being included in
the final model specification. Thus, IBP explores the feature space in accordance with P, but still
promotes sparsity by allowing popular dimensions to dominate the feature space. This allows the IBP
prior to prevent against overfitting. However, in the face of strong statistical evidence, IBP still allows
an unpopular feature to emerge.

A Beta Process IRT Model
Under the specification in (7), r j induces a spike and slab prior on the vector of discrimination
parameters, λ j . Placing an Indian Buffet Process prior on R, the induced prior on λ j,k is:

P(λ j,k |r j,k) ∼ r j,k P(λ j,k) + (1 − r j,k)δ0 (13)

where δ0 is a point mass PDF at zero and P(λ j,k) is the marginal prior on λ j,k . Thus, if r j,k = 1, λ j,k is
allowed to take a non-zero value. On the other hand, if r j,k = 0, it is restricted to be equal to zero. In
the context of roll call scaling, this is equivalent to estimating whether or not a vote draws on a specific
dimension when estimating the parameters of the underlying utility model.

Using the IBP prior on R allows for a full model definition, which is outlined in Section A.2 of the
Appendix. The full model, a beta process item-response theory model (BPIRT), is a close analogue to
the infinite latent feature model developed by Knowles and Ghahramani (2011). BPIRT has many of
the same properties as the standard Bayesian IRT model (Clinton et al. 2004).

Under this specification, estimation of the model using Markov Chain Monte Carlo methods proceeds
in a relatively straightforward manner. Technical details related to estimation of the BPIRT model
are included in the appendix. The full conditional distributions and sampling methods are outlined in
Section A.3. Methods for determining good starting values and assessing convergence of the Markov
chains are outlined in Section A.5 and Section A.6. The BPIRT model also uniquely identifies estimates
for the structural parameters; this property is discussed in Section A.4. Finally, simulations which how
accurately BPIRT uncovers the binary matrix under a known model are shown in Section A.7.
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Disagreement and Dimensionality

FIGURE 1. Dimensionality and Corresponding 95% HPD Intervals Estimated by BPIRT for the
1st − 115th Sessions of the U.S. House and the U.S. Senate.
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MULTIDIMENSIONALITY IN THE U.S. CONGRESS OVER TIME

The varying dimensions model of voting is well suited to examining the question of multidimensionality
in voting and BPIRT provides a rigorous statistical tool for creating estimates of dimensionality in roll
call voting. The results related to multidimensionality from BPIRT promise to provide insight into this
problem.5 I begin by assessing how many dimensions are estimated in the 1st − 115th (1789 − 2017)
sessions for each chamber of the U.S. Congress. Figure 1 shows the estimated number of dimensions
and corresponding 95% highest posterior density intervals for each session within each chamber of
Congress. This plot shows a generally multidimensional legislature. In the case of the U.S. House,
sessions near the beginning of U.S. history and some sessions in the late 1800s and early 1900s have
credible intervals that include a single dimension. However, the vast majority of sessions are estimated
to need more than one dimension to best model roll call behavior.

A similar story is seen in the U.S. Senate. While there are more sessions which are estimated to
require only one dimension, the majority require at least two dimensions to best model the roll call
voting variation. One important caveat for these unidimensional sessions is that the IBP prior which
drives BPIRT is limited in its ability to estimate multidimensionality when there are a small number of
votes and/or voters. In early sessions of the U.S. House, there were less voting members and there
were typically less votes than in more recent sessions of the U.S. House. As shown in simulations,
BPIRT underestimates dimensionality in these settings, so there is reason to believe that this is the case

5Additional figures and discussion for this section can be found in Section B of the appendix.
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Kevin McAlister

for the U.S. House. Similarly, there are always around 100 voting U.S. Senators in a given session
which inherently places a cap on the number of dimensions which can be modeled for a session of this
chamber. This is not to say that these results should be discarded - rather, it is important to point this
aspect of BPIRT out as a weakness for estimating dimensionality in smaller sets of roll call data.

In order to examine multidimensionality at the vote level, a measure of multidimensionality must be
established (Roberts et al. 2016; Bateman et al. 2017; Smith 2007). One method of summarizing the
dimensionality of a single vote is to simply use the posterior probability that the vote took on more
than one dimension in the binary matrix (MD). However, this metric suffers from minor theoretical
deficiencies; it does not explain how much a vote needs each dimension. Thus, a second supplementary
measure of multidimensionality is used - the proportion of variance explained (PVE) by each dimension
on a specific vote:

PVE j,k =
r j,kλ

2
j,k

K∑
h=1

r j,hλ
2
j,h

(14)

Using PVE to examine the influence of the first dimension on a vote, PVE takes a value of one when
only the first dimensions is needed. As the influence of other dimensions increase, PVE for the
first dimensions decreases. Therefore, PVE measures the overall influence of a given dimensions on
vote outcomes. MD and PVE are highly correlated, but provide different views of each dimension’s
necessity in the individual case.
Using the proposed measures of multidimensionality, I examine the role of the first dimension and

the set of dimensions beyond the first estimated by BPIRT in explaining variation within U.S. House
roll call data sets.6 One of the many advantages of the BPIRT approach is that these metrics can be
examined for any subset of votes within the analyzed sets. An application of the property is examining
the difference between the aggregate set of all roll calls and more important "key votes" (Smith 2007;
Roberts et al. 2016).

I examine MD and PVE for both the full aggregate sets of roll call votes for the 1st − 115th sessions
of the U.S. House as well as the set of votes classified as "key votes" by Congressional Quarterly for
the 80th − 115th sessions. Figure 2 shows these quantities over time for the U.S. House. Examining the
proportion of multidimensional votes in each session shows highly multidimensional voting within
the U.S. House, especially in the 20th and 21st centuries. Even in recent sessions of the U.S. House,
which are considered to be extremely party driven and one-dimensional, a significant number of votes
require more than one dimension to best explain variation in the roll call votes. On the other hand,
the PVE for the first dimension is relatively high throughout time. While voting in recent sessions is
certainly explained more heavily by the first dimension than in the mid and late 1900s, the reliance on
the first dimension is equal to many non-unidimensional sessions during Reconstruction and the Great
Depression.

Looking only at key votes provides support for the theory that important votes are multidimensional
and require more than simply using the first dimension of ideal points.7 While MD shows a modest

6For this and the proceeding examinations of multidimensionality in roll call voting, I choose to only present
results for the U.S. House. The trends and inferences made from U.S. House data are similar to those that are
made from U.S. Senate data. For the sake of brevity, I withhold figures and other summaries of the U.S. Senate
data in this paper. Results from my analysis of the U.S. Senate can be seen in the replication files included with
this paper.
7For each session where CQ key votes were examined, there were between 80 and 300 votes that were classified
as important votes by Congressional Quarterly.
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Disagreement and Dimensionality

FIGURE 2. Proportion of Multidimensional Votes and Proportion of Variance Explained by the
1st Dimension Estimated by BPIRT in the 1st − 115th Sessions of the U.S. House
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difference between the aggregate roll call sets and the set of key votes, PVE shows that a significantly
lower amount of variance can be explained by the first dimension in key votes. On average, approximately
25% less variance is explained using the first dimension. This finding along with conflicting results for
the aggregate roll call sets provides evidence for the aggregation hypotheses presented by Roberts et al.
(2016) and should serve as a starting point for more fine-grained examinations of dimensionality in
landmark legislation over time.

Examining vote level dimensionality is not the only way to demonstrate the necessity of dimensions
past the first - BPIRT shows marked improvements over other roll call scaling techniques in terms of
overall model fit. One method of comparison that rewards correct classification of model outcomes
given the ideal points while also penalizing inefficient estimates is the geometric mean probability of
correct classification (Carroll et al. 2009). For a given set of votes, the geometric mean probability of
correct classification (GMP) is:

GMP = ©«
N∏

i=1

P∏
j=1

P(ŷi, j = yi, j)
ª®¬

1
N∗P

(15)

where ŷi, j is the predicted vote for a legislator and yi, j is the observed vote.

Figure 3 shows the GMP metric for each session of the U.S. House broken out by the dimensionality
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FIGURE 3. Geometric Mean Probability of Correct Classification for Unidimensional and Mul-
tidimensional Votes in the 1st − 115th Sessions of the U.S. House
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of the vote implied by BPIRT.8 Unsurprisingly, there are significant gains made in model fit when
examining multidimensional votes. The difference in model fit between WNOMINATE-1D and BPIRT
on these votes is quite large. Combined with the knowledge that many votes within each session are
multidimensional, this provides strong evidence that unidimensional models are missing out on a
large portion of the variation which drives voting in the U.S. House. BPIRT also shows large gains
over WNOMINATE-1D when analyzing unidimensional votes. This result is somewhat unintuitive
as the underlying formal model for a unidimensional vote is essentially the same for BPIRT and
WNOMINATE. However, this result can be attributed to proper placement of zeros in the binary matrix
and, in turn, ensuring that each vote corresponds only to the correct subset of potential dimensions of
the policy space.

Interpretation of Ideal Points

BPIRT paints a picture of a legislature that behaves in a multidimensional manner; while not all votes
require multiple dimensions to explain voting patterns, many votes need something beyond a single
dimensional ideal point to best explain voting. A natural question that follows pertains to the meaning

8Gaps in the multidimensional plot occur when BPIRT estimates that a session has only one dimension or less
than 10 votes required more than one dimension to best model its vote outcomes.
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Disagreement and Dimensionality

FIGURE 4. Correlation between the 1st Dimension of Ideal Points Estimated by BPIRT, the
Ideal Points from WNOMINATE-1D, and the Proportion of Majority Party Voting
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1800 1850 1900 1950 2000

1800 1850 1900 1950 2000

0.5

0.6

0.7

0.8

0.9

1.0

0.25

0.50

0.75

1.00

U.S. House Year

C
o

rr
e
la

ti
o

n

Note: Values reported are posterior means.

of the dimensions - what is represented by the first dimension and what concepts are represented by
dimensions beyond the first?

First, I examine the meaning of the first dimension, over time. In particular, I examine whether
or not the first dimension is simply providing a measure of the individual frequency of party bloc
voting (Aldrich et al. 2014; Lee 2009; Harbridge 2015). In order to test this hypothesis, I measure how
frequently a voting member of the legislature votes with that session’s majority party.9 Given that more
than 99% of votes have a non-zero contribution from the first dimension, over time, understanding the
meaning of this dimension is key.

Figure 4 shows the correlation between the ideal points from the first dimension for each voting
member compared to the proportion of votes for which they cast the same vote as the majority
party preference. The relationship between majority party voting and the uncovered ideal points
strongly supports the theory that the first dimension of BPIRT ideal points is simply modeling party
teamsmanship. Figure 4 also shows that BPIRT and WNOMINATE are highly correlated over time.
This, in turn, implies that the first dimension of WNOMINATE is largely estimating the same construct
with the first dimension.
9Specifically, I determine the majority party vote on a give roll call vote to be the most frequently made choice by
the members of the majority party in a given session.
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FIGURE 5. Ideal Points and Dimensions Estimated by BPIRT for the 107th Session of the U.S.
House (2001 - 2003)
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Note: The reported ideal points are from the iteration of the MCMC procedure with the highest
complete-data likelihood.

In order to demonstrate the importance of dimensions beyond the first in explaining legislative
behavior that exists outside of party loyalty, I examine one particular session.10 The 107th session of
the U.S. House took place between 2001 and 2003 and contained the September 11th attacks and the
ensuing scramble from the U.S. government attempting to respond to domestic and foreign security
concerns. These issues created strong divisions within parties and led to a number of outcomes that
appeared to favor the pro-war members of the U.S. Congress. It is reasonable to expect that a significant
portion of roll call votes in this session require dimensions beyond party loyalty when explaining
variation and estimating ideal points.

Figure 5 shows the seven dimensions of ideal points uncovered by BPIRT for the 107th session of
the U.S. House.11 First, and foremost, the party loyalty dimension is highly apparent and shows a split
between Republican and Democratic voting (PVE = .77). Other dimensions are important and explain
the other 23% of explainable variance. Some of the dimensions relate closely to specific policy topic
areas such as rural/infrastructure issues (PVE = .03) and the government budget (PVE = .05). Another

10Roberts et al. (2016) and Bateman et al. (2017) show that dimensions beyond the first are colored by the salient
issues of their time and the preferences of the agenda setters. This make a general analysis of dimensions beyond
the first difficult.
11Additional material about how names for each dimension were determined and the structure of dimensions
beyond the first are included in Section B.3 of the appendix.
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Disagreement and Dimensionality

FIGURE 6. Votes and Cutlines for Department of Defense Authorization Act for Fiscal Year
2003 Vote in the 107th Session of the U.S. House (Roll Call No. 655)
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highest complete-data likelihood.

dimension that emerges relates to purely procedural votes, such as ceremonial motions and approving
the chamber’s journal (PVE = .02). However, the set of dimensions that are most important to this
session, beyond party loyalty, relate to the September 11th attacks and the relating security measures.
These dimensions include national security (PVE = .07), foreign policy (PVE = .04), and a dimension
that relates to funding the war in Afghanistan (PVE = .02). Given the sets of issues that were salient in
the 107th session of the U.S. House, this set of dimensions beyond party voting makes sense.

Though all votes do require party loyalty to explain some of the variance, most votes require
additional explanations from other sources. One example that is particularly relevant to the 107th U.S.
House relates to funding the war in Afghanistan. Votes related to funding military action arose after
the September 11th attacks. While the Republican party unanimously agreed to motions to increase
funding to the Department of Defense for these actions, Democrats were split in these votes. Though
the Republicans held the House majority, many Democrats used these votes to signify support for or
against the war to their constituents and this created splits in the voting.

The BPIRT estimation procedure selects 14 of these votes and estimates that these votes require a
common dimension in addition to the party loyalty dimension. While this dimension only accounts
for around 2% of the total variance explained in this session, it models an important heterogeneity in
Democrat voting. Figure 6 shows the vote outcome by party for one of these votes, which pertained to
an amendment to the Department of Defense Authorization Act for 2003 proposed by Loretta Sanchez
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(D-CA). This figure shows the BPIRT ideal points of the voters in two dimensions: the party loyalty
dimension and the DOD dimension. Additionally, I illustrate three separate cutlines which show the
line on which a voter would be undecided between a "Yea" or "Nay" vote. When this vote is scaled
using WNOMINATE with only one dimension, the cutline indicates perfect within party agreement.
This is not the case and is indicative of a second dimension at play. However, WNOMINATE in
two-dimensions misses the important cut needed for this vote. On the other hand, BPIRT creates a
cutline that splits the Democrats into those that support higher funding and those that oppose spending
increases. This example perhaps best demonstrates the differences between BPIRT and other roll call
scaling procedures; BPIRT estimates dimensions as a function of clusters of votes that share similar
voting patterns and finds dimensions that are necessary for modeling their outcomes. This consistency
in topic is a feature unique to BPIRT and provides a tool that can create in-depth inference of the topics
that drive legislative voting throughout U.S. history.

U.S. LEGISLATIVE VOTING AND MULTIDIMENSIONALITY

BPIRT provides a tool for analyzing roll call votes and understanding the dimensionality of votes
as well as the issue sets that drive variation in voting within the U.S. legislative chambers. While
BPIRT shows marked improvements over previous approaches to roll call scaling, its benefit can be
seen as bridging the aggregate roll call scaling approaches of Poole and Rosenthal (1997) and the
issue-specific approaches of Roberts et al. (2016) and Bateman et al. (2017). This gives rise to measures
of multidimensionality that are comparable within and across sessions and provides a unique measure
that can assess the impacts of multidimensionality on theories of legislative behavior.

I leverage the ideal points estimated by BPIRT and the corresponding measures of dimensionality
to explore the relationship between the dimensionality of a vote and the outcomes that are predicted
by models of U.S. legislative voting. While there are numerous examples of models that appeal to
unidimensionality and test theories utilizing unidimensional NOMINATE scores, I turn my attention
to two specific models: the pivotal voter model presented by Krehbiel (1998) and the party cartel
model presented by Cox and McCubbins (2005). These two models are widely cited in studies of
U.S. legislative behavior and seek to explain the ways in which the organization of legislative voting
and parties influence voting outcomes. These two models differ in their explanations of how voting
decisions are made, but strongly leverage a unidimensional policy space in the theoretical and empirical
examinations of their theories.

Specifically, I seek to understand how robust these theories are to the assumption of unidimensionality.
Theoretical outcomes under multidimensionality are well established, but there are few empirical
studies of the impact of multidimensionality on voting in the literature. Unidimensionality can be
best described as a stabilizing assumption - when the underlying policy space is unidimensional, the
outcome is predictable given assumptions about how legislators behave. In contrast, multidimensional
votes are theoretically characterized by outcomes that can take any form. Thus, the goal is to measure
the stability of outcomes implied by the pivotal voter and party cartel models when properly taking
dimensionality into account.

As discussed previously, multidimensionality comes in many different shapes and sizes. For example,
a vote can be multidimensional, but rely very heavily on one single dimension while there is only a
small amount of variance explained by another set of dimensions. For this reason, I explore three
separate ways in which multidimensionality may relate to vote instability:
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Disagreement and Dimensionality

1. No Effect: As the multidimensionality of a vote increases, there is no discernible change in the
stability of voting outcomes.

2. Continuous Effect: Vote outcomes become more and more unstable as the multidimensionality
of the vote increases; low levels of multidimensionality show more stable outcomes than votes
with higher levels of multidimensionality.

3. Threshold Effect: Vote outcomes are stable and predictable up to a small amount of multidi-
mensionality. Once this threshold is crossed, vote outcomes fundamentally change (McKelvey
1976; Schofield 1978). Even when the amount of multidimensionality is small, there is a marked
difference between unidimensional and multidimensional outcomes.

Each of these mechanisms provide a different view of how theories of U.S. legislative voting might be
influenced by the assumption of unidimensionality.

Evidence that multidimensionality influence vote outcomes has significant implications for the study
of U.S. legislative voting. First, existing theories related to legislative voting must be examined for
conditional relationships - if the vote is multidimensional, does the prediction from the theory change?
Multidimensionality points to different factors that are necessary for contextualizing the conditions
under which a vote are made. Second, the usage of unidimensional ideal points under evidence for
multidimensionality leads to potential biases in further results. Given the interpretation of the first
dimension examined previously, usage of unidimensional ideal points when multiple dimensions are
needed essentially summarizes the level of majority party voting of a member while treating other
sources of predictable roll call behavior as noise. Particularly when being used as proxies of preferences
to test theories of party control, this can lead to acceptance of theories as a product of an endogenous
measure. Finally, under the common assumption of rational voters, evidence that multidimensionality
leads to more unpredictable outcomes points to ways in which rational proposers can skew proposals to
their advantage (Riker 1980; Shepsle 1978; Shepsle and Weingast 1981; Baron and Ferejohn 1989).
If multidimensional models are appropriate models of legislative voting, then the idea that strategic
proposers can utilize multidimensionality to achieve better outcomes must be accounted for within
theories related to the legislative process.

A Theory of Pivotal Voters

Perhaps one of the most well known theories of U.S. legislative behavior, Krehbiel (1998) outlines a
theory of pivotal voters in legislative voting. Under this model, a proposal, the status quo, and voters
are mapped to a unidimensional, commonly-known policy space. Under the rules of the legislative
body, Krehbiel (1998) contends that policies must be proposed outside of the gridlock zone in order to
pass the chamber. The gridlock zone is defined by the median voter, the presidential veto pivot, and
(when appropriate) a Senate filibuster pivot. These members of the legislature effectively control the
proposals which pass and, in turn, rational proposers craft legislation with these constraints in mind.
This model of legislative voting is simple and effective, leading to many insights about periods of low
and high gridlock within the U.S. legislature.

To examine how multidimensionality influences empirical support for the theory of pivotal politics, I
recreate the empirical analysis from Krehbiel (1998, Chapter 5) that examines the behavior of filibuster
pivots in successive cloture votes in the U.S. Senate. When a vote to invoke cloture goes before the
U.S. Senate, Krehbiel (1998) contends that the filibuster pivot controls whether or not debate on a vote
is stopped. An interesting test of this theory arises when a cloture vote occurs multiple times in the
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same bill-episode. The theory of pivotal voters claims that changes in individual votes from vote to
vote are most likely to occur for members close to the filibuster pivot location. Using unidimensional
NOMINATE scores to find voters close to the theoretical filibuster pivot, Krehbiel (1998) finds evidence
for the pivotal voter model.
I contend that the empirical evidence shown by Krehbiel (1998) is driven by the unidimensional

assumption made when utilizing unidimensional NOMINATE scores; I expect that evidence for the
pivotal voter model disappears in pairs of votes which are multidimensional. This conditional view of
the pivotal politics model fits well within the original construction - if voters are able to collapse the
preference space to a single dimension, then rational proposers can target changes in bills. However,
under the multidimensional model, no such targeting can be made.

To examine these competing theories, I recreate this analysis on new data. Using the set of all cloture
votes that took place in the the 89th − 115th sessions of the U.S. Senate, I examine all instances of votes
to invoke cloture that occurred at least twice within the same bill-episode. I then grouped these into
sequential vote pairs, mimicking the data set of Krehbiel (1998). This led to 471 cloture vote pairs over
the course of time analyzed. For each vote pair, I then recorded whether each U.S. Senator switched
their vote. This led to 44, 710 vote observations and 3, 363 vote switches. For each individual U.S.
Senator, the ideal point associated with the first dimension of BPIRT scores was coded into quartiles:
the filibuster quartile (FQ), the filibuster-adjacent moderates quartile (AM), the filibuster-adjacent
extremists quartile (AE), and the non-adjacent extremists quartile (NE). Similarly, the controls outlined
by Krehbiel (1998, Chapter 5) were recorded: President-side vetoes, voting under a unified government,
and whether or not the voter was a Democrat.12

To measure the dimensionality of a pair of cloture votes, I used the PVE for dimensions beyond the
party-loyalty dimension in both votes. If both votes were estimated by BPIRT to be unidimensional,
then dimensionality was coded as zero. Otherwise, dimensionality was set to be equal to the posterior
mean value of PVE. The effect of multidimensionality is measured by testing three models with
different underlying mechanisms. The theory of no effect was tested by not including a control for
the dimensionality of the vote. Under the theory of continuous effect, multidimensionality was coded
as the PVE attributed to dimensions beyond party loyalty. Finally, the threshold effect was tested by
including a dichotomous variable for dimensionality coded to be multidimensional if the PVE for other
dimensions in the vote pair was greater than .001. 43% of vote pairs were classified as multidimensional
under the threshold model.

Figure 7 shows the frequency of vote switches for members of each quartile in both unidimensional
and multidimensional votes as defined by the threshold model. This plot shows overwhelming support
for the theory that dimensionality matters when assessing the appropriateness of the pivotal voter model
in explaining vote switches. The switches that are associated with unidimensional votes are much
more likely to arise from members of the f -quartile than in other quartiles. On the other hand, vote
switches are generally much more likely in the multidimensional case with a more uniform distribution
of switches over the quartiles.
Following the empirical exercise by Krehbiel (1998), I estimated the probability of a vote switch

given the ideal point quartiles, dimensionality of the vote, and the controls.13 Table 1 shows the

12Corresponding switches to the quartile coding were made when the vote met the conditions of a "president-side
veto". For a further explanation of this control and the corresponding recoding, see Krehbiel (1998, Chapter 5, p.
106).
13While a case could be made that session-level random effects are needed, I appeal to the response of Krehbiel
(1998) that such controls would be "utterly atheoretic" as there are no session specific elements of the pivotal
voter theory.
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Disagreement and Dimensionality

FIGURE 7. Number of Vote Switches across Cloture Vote Pairs by Dimensionality and Ideal
Point Quartile
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Number of Cloture Vote Switches

results of this regression under the three different theories of how dimensionality might influence
vote outcomes. Similarly, Figure 8 shows the probabilities of vote switching as a function of ideal
point quartile and the dimensionality of the vote as defined by the threshold model. The results from
the regressions show a number of interesting relationships. First, under the model of no effect, the
results from Krehbiel (1998, Chapter 5) are largely replicated in the new data set - assuming that
dimensionality has no effect on vote switching, voters in the f -quartile are most likely to switch votes
between cloture vote pairs. This relationship is also seen in the other two models when the vote pair
is unidimensional, providing strong support that the pivotal voter findings are supported in the strict
unidimensional case. However, this relationship disappears in the multidimensional case. Results
from the regression echo the vote switching distribution for multidimensional votes shown in Figure 7.
When the vote pair is multidimensional, there is no statistical difference between any quartile in the
95% HPD intervals.

Comparing the marginal likelihood across the models provides an assessment of the degree to which
controlling for multidimensionality improves model fit. First and foremost, it is clear that the marginal
likelihood for both the continuous and threshold models are lower than the model with no effect.
Given that the marginal likelihood inherently penalizes against overfitting, this is strong evidence
that multidimensionality explains a significant amount of variation within the data. Between these
models, the threshold effect has the lowest marginal likelihood indicating that even a small amount
of multidimensionality leads to a fundamentally different role of the pivotal voter. This result along
with the uniform distribution of vote switches points to a chaotic result for more than 50% of the votes
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TABLE 1. Logistic Regression Results for Krehbiel’s Cloture Vote Switching Example (Krehbiel
1998, Chapter 5)

Dependent variable:
Senator Vote Switch in Cloture Vote Pair
No Effect Continuous Threshold

f -Quartile 0.40 0.63 0.96
(0.31,0.50) (0.52,0.74) (0.80,1.13)

f -Adj. Moderates 0.03 0.17 0.22
(-0.06,0.14) (0.04,0.28) (0.03,0.40)

f -Adj. Extremists 0.06 0.25 0.52
(-0.04,0.16) (0.13,0.36) (0.36,0.69)

President Side -1.04 -1.03 -1.01
(-1.14,-0.95) (-1.13,-0.92) (-1.12,-0.92)

Unified Government -0.46 -0.45 -0.42
(-0.55,-0.38) (-0.54,-0.36) (-0.51,-0.33)

Democrat -0.40 -0.39 -0.36
(-0.47,-0.33) (-0.46,-0.31) (-0.43,-0.28)

Multidimensional 1.34 1.10
(1.07,1.63) (0.94,1.26)

FQ × Multidim. -2.10 -0.94
(-2.64,-1.72) (-1.15,-0.73)

AM × Multidim. -1.03 -0.28
(-1.47,-0.60) (-0.50,-0.05)

AE × Multidim. -1.61 -0.74
(-2.08,-1.14) (-0.97,-0.52)

Intercept -2.11 -2.29 -2.78
(-2.19,-2.02) (-2.39,-2.19) (-2.92,-2.63)

Observations 44,710 44,710 44,710
Log Marginal Likelihood -11,609.54 -11,577.67 -11,464.47

1 The comparison group is Nonadjacent Extremists.
2 Coefficient values are posterior medians and values in parentheses are 95% HPD
intervals.

3 Dimensionality under the threshold model is coded as 1 if the proportion of explained
variance attributed to other dimensions is greater than .001 and 0 otherwise.

analyzed; the pivotal voter model provides no information about where vote switches will occur when
the vote is multidimensional. This is one example of how properly accounting for multidimensionality
in U.S. legislative voting can fundamentally change long held beliefs about legislative decision making.

A Theory on Party Control

In response to the work of Krehbiel (1998), scholars pointed to parties as another source that influences
both the proposals that are made and the decisions made by their respective members. One example of
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Disagreement and Dimensionality

FIGURE 8. Probability of Cloture Vote Switch by Ideal Point Quartile

Unidimensional Multidimensional

0.00 0.05 0.10 0.15 0.00 0.05 0.10 0.15

NE

AE

AM

FQ

Probability of Cloture Vote Switch

Note: Probabilities were calculated setting President Side, Unified Government, and Democrat to zero.
Error bars show 95% HPD intervals.

this work is the party cartel theory of agenda control (Cox and McCubbins 2005). Under this model,
rational voters in a unidimensional preference space want to select proposals that are close to their
ideal points. However, their desire to be reelected also influences their vote choices and they frequently
delegate to the central authority of the party to make vote decisions. This leads to strong party control
in vote choice which can lead to votes that are against their individual best actions conditional on their
ideal points.
Party cartel theory leads to a number of empirically testable predictions about agenda control in

the U.S. Congress. One specific example relates to final passage votes in the U.S. House (Cox and
McCubbins 2005, Chapter 5). For each final passage vote, the result can be classified by the proportion
of members from the majority and minority parties voting in support of passage: if less than 50% of the
minority party votes in support of passage, the vote is considered a minority roll with similar conditions
defining a majority party roll. Under the theory of party cartels, these rolls occur in predictable ways.
First, majority rolls should be rare and uniformly distributed conditional on the distance between the
ideal point of the chamber median and the ideal point of the median member of the majority party. On
the other hand, minority rolls should occur often with the frequency increasing as the distance between
the floor median and the minority party median increases. Using unidimensional NOMINATE scores
as estimates for the ideal points, Cox and McCubbins (2005, Chapter 5) find empirical evidence for
both predictions.

AswithKrehbiel (1998), I expect that this empirical evidence is colored by the usage of unidimensional
ideal point estimates and the result is again conditional on the dimensionality of a vote. It is reasonable
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to believe that close alignment between the majority party median and the floor median indicates high
levels of party loyalty and, in turn, produces strong agreements within the majority party on votes
that can be thoroughly explained by party bloc voting. On the other hand, multidimensionality in a
vote points to sources other than party voting and it is reasonable to expect that these votes have less
predictable outcomes.14

To assess the role of multidimensionality, I examined the set of all final passage votes for the
84th − 114th sessions of the U.S. House.15 This data was retrieved from the Political Institutions and
Public Choice Roll-Call Database (Crespin and Rohde 2012). I determined if each final passage vote
was a majority party roll, minority party roll, or if no roll had occurred. This led to 4, 429 observations
of final passage votes with 127 majority party rolls and 1, 743 minority party rolls.16 I used ideal point
estimates from the first dimension of BPIRT for each session and recorded the location of the floor
median and the respective party medians for each vote. The absolute difference between these two
metrics constitutes the distance between medians.

As before, the three theories of multidimensionality are tested. Under the theory of no effect, the
probability of a roll is tested only as a function of distance between the respective medians. The
continuous effect was tested by utilizing the PVE for dimensions beyond the first on a given vote, the
distance between medians, and a multiplicative interaction between the two. Finally, similar to the
continuous model, the threshold effect was tested by classifying any vote where the PVE for dimensions
beyond the first was greater than .001 as multidimensional. Under the threshold model, 68.8% of final
passage votes were classified as multidimensional.

Figure 9 shows the set of final passage votes analyzed. Votes are compared based on the proportion
of "Yea" votes cast by each party in each case. Votes are then classified as unidimensional or
multidimensional using the threshold model. The difference in vote proportions between the two
classes of votes is stark. On unidimensional votes, there are two general outcomes: near unanimous
support by the entire set of voters or minority rolls with nearly unanimous support from the majority
party. Majority party rolls on unidimensional votes are incredibly rare - only 4 out of 1,382 (.002%)
unidimensional final passage votes result in majority party rolls. On the other hand, the results for
multidimensional votes are more varied; the rate of minority rolls appears to be equivalent to the rate
of votes where the minority party is not rolled and the rate of majority rolls (4%) is much higher than
in the unidimensional case.

I used a logistic regression to examine the relationship between party median distance, multidimen-
sionality, and party rolls. In order to best replicate the test from Cox and McCubbins (2005), I chose to
include zero-mean session-level random intercepts estimated via a normal random effect. I report the
variance of these parameters with the results from these regressions. Diffuse normal spike-and-slab
priors with a spike at zero were placed on the regression coefficients.

Table 2 shows the results from these regressions. First, examining the model of no effect, the results
from Cox and McCubbins (2005) are replicated. When all votes are assumed to be unidimensional,
the probability that a final passage vote results in a majority party roll shows no evidence that it is
influenced by the distance between medians. Similarly, there is a large positive correlation between
the probability of a minority party roll and the distance between the minority party median and the

14It is worth noting that multidimensionality is mentioned by Cox and McCubbins (2005) and this possibility is
explicitly considered, but not examined in depth.
15In line with Cox and McCubbins (2005), I restrict this set to votes which required a simple majority for passage.
16The rate of passage for final passage votes is around 98%.
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FIGURE 9. Results of Final Passage Votes in the U.S. House
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floor median. However, there is strong evidence that controlling for the dimensionality of a vote
explains more variation in both sets of party rolls. First, the DIC, a proxy for the marginal likelihood
in hierarchical models that penalizes the addition of new parameters, is lower for the models that
control for multidimensionality in both majority and minotiry party rolls. While this decrease is
moderate in the majority rolls case, the minority rolls case shows a massive decrease in DIC. In each
regression, the threshold model shows the smallest DIC, implying that a model that treats votes with
even a small amount of variation that can be explained by dimensions beyond the first differently than
unidimensional votes provides the best fit to the data.

Figure 10 shows the predicted probabilities of majority and minority party rolls as a function
of distance between the respective medians and the dimensionality of a vote under the threshold
model. These results point to a characterization of negative agenda control that is conditional on the
dimensionality of the vote. First, the probability of a majority party roll is low in both unidimensional
and multidimensional votes. While certainly lower in the unidimensional case, multidimensional votes
show a predicted probability of around .06 in the case of the maximum observed distance between the
floor and majority party medians. However, there is a statistically meaningful increase in the probability
of majority rolls in the multidimensional case - while negative agenda control from the majority party
is apparent, it seems that there are potentially other factors at play (Aldrich and Rohde 2000).

On the other side, minority party voters benefit frommultidimensionality. Under strict unidimensional
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TABLE 2. Logistic Regression Results for Cox and McCubbins’ Final Passage Vote Example
(Cox and McCubbins 2005, Chapter 5)

Dependent variable:
Majority Party Roll on Final Passage Vote

No Effect Continuous Threshold
Distance 0 0 0

(0,2.31) (-2.63,0) (-3.5,0)
Multidimensional 0 0

(0,0) (0,0)
Dist. × Multidim. 10.08 9.75

(6.68,13.80) (6.51,13.27)
Intercept -3.79 -5.55 -5.48

(-4.32,-3.38) (-6.35,-4.72) (-6.28,-4.66)
Variance of 0.72 0.68 0.66
Random Effects (0.43,1.05) (0.4,.99) (0.38,0.97)
Observations 4,429 4,429 4,429
DIC 1131 1096 1077

Dependent variable:
Minority Party Roll on Final Passage Vote

No Effect Continuous Threshold
Distance 7.78 10.04 9.44

(4.82,10.45) (7.17,12.91) (6.52,12.48)
Multidimensional 3.60 2.00

(2.16,4.88) (1.22,2.83)
Dist. × Multidim. -15.22 -8.88

(-18.26,-12.46) (-10.71,-7.23)
Intercept -4.15 -4.38 -4.26

(-5.48,-2.74) (-5.75,-2.95) (-5.72,-2.82)
Variance of 0.29 0.24 0.25
Random Effects (0.2,0.41) (0.15,0.35) (0.15,0.37)
Observations 4,429 4,429 4,429
DIC 4994 4264 4158

1 Coefficient values are posterior medians and values in parentheses are 95% HPD
intervals.

2 These models were estimated with spike-and-slab priors on the coefficients. The
spike was placed at zero. Posterior values equal to zero arise when the coefficient is
not statistically distinguishable from zero.

3 Congress-level random effects were estimated for the intercept terms only.
4 Dimensionality under the threshold model is a binary variable coded as 1 if the PVE
of the first dimension is less than .001 and 0 otherwise.

votes, the minority party roll rate is positively correlated with the distance between medians. However,
in multidimensional votes, knowing the distance between the minority party median and the floor
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FIGURE 10. Probability of Party Rolls as a Function of Distance between the Party Median and
the Floor Median

Majority Party Minority Party

0.10 0.15 0.20 0.25 0.30 0.3 0.4 0.5 0.6 0.7

0.25

0.50

0.75

1.00

0.00

0.03

0.06

0.09

Distance between Party Median and Floor Median

P
ro

b
a
b

il
it

y
 o

f 
P

a
rt

y
 R

o
ll

Unidimensional

Multidimensional

Note: Probabilities were calculated only within the range of observed outcomes for majority and
minority party distances. Dotted lines show 95% HPD intervals.

median provides no information about the probability of a minority party roll. In other words, the
predictions from party cartel theory relating to the minority party only apply to around 30% of
final passage votes. This finding does not invalidate the party cartel theory. Rather, it points to
multidimensionality creating cross-party support for bills that are not necessarily correlated with
the number of times that a member votes with the majority party. Along with theory that strategic
proposers use multidimensionality to create passing votes that cater to their own preferences, this opens
a new door for research into the role of agenda control in the U.S. Congress under potentially highly
multidimensional bills.

CONCLUSION

Roll call scaling and the operationalization of the spatial model is critical to the scientific examination
and development of theories about how members of the U.S. Congress cast votes. While existing
methods produce scores that appear to be best represented in a single dimension, I show that this
finding is due to the tests used to determine dimensionality. In turn, I develop a varying dimensional
representation of the spatial model and show a corresponding estimation technique that allows for
estimation of both the aggregate-level dimensionality of the ideal point space as well as vote-specific
sets of dimensions. Using this model, I show that there is little evidence for unidimensional ideal
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points in the U.S. House and U.S. Senate and that historical voting demonstrates multidimensional
patterns. I present a set of ideal points that bridge the gap between the common aggregate methods and
the more subject-specific examinations that are present in the roll call scaling literature. Under this new
model, I then show that multidimensionality is an important aspect to be considered for further models
of U.S. legislative voting that rely on ideal points as summaries of the preferences of voters. All in all,
I show that BPIRT is a powerful procedure for determining the dimensionality of latent variables used
in social science applications.

While the work in this article is catered to the study of roll call scaling, the models presented here
are widely applicable to any study where latent variables are estimated via an item-response theory
model. With light changes, Indian Buffet Process priors can be used to test dimensionality in a variety
of settings and can be used as validation for claims related to the dimensionality of a latent space.
Similarly, there are numerous extensions which can be made to the model presented in this paper.
Under the Bayesian nonparametric framework, it is possible to examine how dimensions change over
time by providing sufficient changes to the underlying priors. Similarly, different methods of clustering
can be used to find interesting similarities in voting between both voters and the topics of the votes,
themselves. This model serves a starting point into more complex examinations of what all can be
learned from the spatial model of voting and scaling techniques.
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THE BPIRT MODEL AND ESTIMATION

Beta Processes

A beta process is a random discrete measure that is completely described by a countably infinite set
of atoms, where each atom has a finite mass determined from a stick-breaking process (Hjort 1990).
Unlike the well-known Dirichlet process (Ferguson 1973), the probabilities that an individual unit
belongs to a set of potential groups do not have to sum to one. Rather, the masses must only be between
zero and one. The beta process is then used as a base measure for a Bernoulli process. In other words,
a beta process yields a stochastic process for binary random variables or feature selection.

Definition 1 Let Ω be a measurable space and B be its σ-algebra. Let H0 be be a continuous
probability measure on (Ω,B) and α a positive scalar. Assume that Υ can be divided into K disjoint
partitions, (B1, B2, ..., BK). The corresponding beta process is generated as:

H(Bk) ∼ Beta(αH0(Bk), α(1 − H0(Bk))) (A1)

where Beta(·, ·) corresponds to the standard two-parameter beta distribution. Allow K → ∞ and
H0(Bk) → 0, then H ∼ BP(αH0).

The beta process can be written in set-function form:

H(ν) =
∞∑

k=1
πkδν,k(ν) (A2)

where H(νi) = πi and δν,k(ν) is an arbitrary measure on ν. In the case of the beta process, π does not
serve as a PMF. Rather, π serves as part of a new measure that parameterizes a Bernoulli process:

Definition 2 Let the column vector, r j , be infinite and binary with the k th value, r j,k:

ri,k ∼ Bern(πk) (A3)

The new measure on the measurable space, Υ, is drawn from a Bernoulli process.

By arranging the samples for a set of infinite vectors as a matrix, we can see that a beta process is a
prior over an infinite binary matrix with each row corresponding to a location in the measurable space.
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BPIRT Full Model Specification
Beginning with the likelihood of the data, a full model specification for the BPIRT model can be
defined. First, recall that the binary random variable is projected to a latent continuous space through
data augmentation (Albert and Chib 1993) such that:

xi, j ∼


TN−∞,0(λ jωi − α j, 1) if yi, j = 0
TN0,∞(λ jωi − α j, 1) if yi, j = 1
N(λ jωi − α j, 1) if yi, j is missing

(A4)

Then, the BPIRT model can be defined as:

P(xi, j |−) ∼ N((r j � λ j)ωi − α j, 1)
P(ωi) ∼ NK(0, IK)
P(λ j,k |r j,k) ∼ r j,kNp(λ j,k ; 0, γ−1

k ) + (1 − r j,k)δ0

P(r j,k) ∼ Bern(πk)
P(πk) ∼ Beta(a/K, b(K − 1)/K)
P(γk) ∼ Gamma(c, d)

(A5)

In all cases, intentionally vague or improper uniform priors are used on the structural parameters.
Similarly, conjugate priors are used for convenience in estimation. While there is debate as to the impact
of these choices (Murray et al. 2013), simulation shows that these choices are relatively innocuous
given the size of the standard roll call data set.

Under a large, but finite K that approximates an infinite dimensional representation of R, the model
can be estimated with an explicit beta-Bernoulli prior on the elements of the binary matrix (Paisley and
Carin 2009; Doshi et al. 2009). If K = ∞, then we use the Indian Buffet Process prior (Ghahramani
and Griffiths 2006). I choose to use the explicit infinite approach in this article.

MCMC For BPIRT
Estimation of the BPIRT model uses the following sampling routine (Knowles and Ghahramani 2011):

1. Sample Continuous Mappings for the Binary Random Variables, X . For each i ∈ (1, ..., N)
and j ∈ (1, ..., P), sample xi, j from a truncated normal distribution according to:

xi, j ∼


TN−∞,0(λ jωi − α j, 1) if yi, j = 0
TN0,∞(λ jωi − α j, 1) if yi, j = 1
N(λ jωi − α j, 1) if yi, j is missing

(A6)

2. Sample R and Λ jointly.
Sampling Currently Observed Features
Define K+ as the current number of active features. For each j ∈ (1, ..., p) and k ∈ (1, ...,K+)
define:

t j,k =
P(r j,k = 1|X,−)
P(r j,k = 0|X,−)

=
P(X |r j,k = 1,−)
P(X |r j,k = 0,−)

P(r j,k = 1)
P(r j,k = 0)

(A7)
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P(X |r j,k = 1,−)
P(X |r j,k = 0,−) =

√
γk

γ
exp

(
1
2
γµ2

)
(A8)

P(r j,k = 1)
P(r j,k = 0) =

m− j,k

P − m− j,k + 1
(A9)

where γ = ω′kωk+γk , µ = 1
γω
′
k Ê j , Ê j = x j−λ jΩ+α j setting λ j,k = 0, andm− j,k = −r j,k+

p∑
h=1

rh,k .

Let
pr=1 =

t j,k

1 + t j,k

then sample P(r j,k |−) ∼ Bern(r j,k ; pr=1). If r j,k = 1, then sample P(λ j,k |−) ∼ N(λ j,k ; µ, γ−1).
Otherwise, set λ j,k = 0.
Sampling New Features
Begin by sampling the two Indian Buffet Process hyperparameters, a and b. Sample a from the
full conditional:

P(a|−) ∼ Gamma
(
a; K+,HP(b)

)
(A10)

where HP(b) =
P∑

h=1

b
b+h−1 . b must be drawn via a Metropolis-Hastings step. Draw a new proposal:

P(b∗) ∼ Gamma(b∗, 1, 1) (A11)

Accept b∗ with probability min(1, rb→b∗):

rb→b∗ =

(ab∗)K+ exp[−aHP(b∗)]
K+∏
k=1
B(mk, P − mk + b∗)

(ab)K+ exp[−aHP(b)]
K+∏
k=1
B(mk, P − mk + b)

(A12)

where B(·, ·) is the Beta function and mk =
P∑

j=1
r j,k .

For each j ∈ (1, ..., P), sample the new number of dimensions to try:

P(κ j) ∼ Pois
(
κ j ;

ab
b + P − 1

)
(A13)

Knowles and Ghahramani (2011) discuss ways to make this proposal explore the feature space in
a faster way.
Draw values for each of the new potential dimensions. For q ∈ (1, ..., κ j):

P(λ j,q) ∼ N(λ j,q; 0, 1) (A14)

which will be referred to collectively as λ j,κj .
Using this as the proposal for a Metropolis-Hastings draw, accept the new dimensions with
probability min(1, rη→η∗):

rη→η∗ = (2π)(Nκj )/2 |M |−N/2 exp

[
.5

N∑
i=1

m′iMmi

]
(A15)
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where M = λ′j,κjλ j,κj + Iκj , mi = M−1λ j,κj Êi, j , and Ê = X − ΛΩ + α.
If the new proposal is accepted, set λ j,(K++1:K++κj ) to the proposed values. Scheduling this part of
the algorithm after updating values of Λ improves mixing. Set K+ to the new number of columns
represented in Λ.

3. Remove Inactive Features and Normalize Λ. For each k ∈ (1, ...,K+), if r j,k = 0 ∀ 1 ≤ j ≤ p,
remove k from the analysis. Recalculate K+. Post-process Λ to normalize the variance. For each
j ∈ (1, ..., p) and k ∈ (1, ...,K+) set λ j,k :

λ j,k =
λ j,k√

1 +
K+∑
h=1

λ2
j,h

(A16)

4. Sample Ω. For each i ∈ (1, ..., n), sample ωi ∈ RK+ from:

P(ωi |−) ∼ NK+(ωi; (Λ′Λ + IK+)−1Λ′yi, (Λ′Λ + IK+)−1) (A17)

5. Sample Item Level Intercepts, α. For each j ∈ (1, ...p), sample the item level intercept from:

P(α j |−) ∼ N
(
µ̄ j,

1
N2

N∑
i=1
(µi, j − µ̄ j)2

)
(A18)

where µi, j = λ
′
jωi − xi, j and µ̄ j =

1
N

N∑
i=1

µi, j .

6. Sample Factor Precisions, γk . For each k ∈ (1, ...,K+), sample γk from:

P(γk |−) ∼ Gamma ©«mk

2
,

p∑
j=1

λ2
j,k

ª®¬ (A19)

where mk is the number of sources for which feature k ∈ (1, ...,K) is active.

Identification of Structural Parameters in BPIRT

One model consideration which requires further examination relates to identification of the structural
parameters. It is well known that ideal points estimated using latent variable models are unidentified
with further constraints (Rivers 2003). Identification can be induced by placing constraints K(K + 1)
ideal points or requiring that the matrix of discrimination parameters have a lower-block triangular
structure with positive elements on the main diagonal (Geweke and Zhou 1996).

Using BPIRT, neither of these approaches are viable - since the number of columns in the matrix of
discrimination parameters is technically infinite, placing a priori constraints is not possible. Fortunately,
the sparsity inducing beta process prior on the discrimination parameters ensures identification. First,
the number of votes which take on a feature necessarily decreases as the cardinality of the feature

increases (Bhattacharya et al. 2011). For example, if r j,1 = 1 ∀ j ∈ (1, ..., P) and
P∑

j=1
r j,1 = P, then

P∑
j=1

r j,1 < P. This ensures that
P∑

j=1
(1 − r j,k) ≥ k ∀ k ∈ (1, ...,∞). Second, the spike-and-slab priors
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on the matrix of discrimination parameters ensures that each element of this matrix has a posterior
distribution completely contained on one side of zero (Knowles and Ghahramani 2011). Together,
these two features effectively mimic the requirements for identification presented by Geweke and Zhou
(1996) and ensure that all structural parameters estimated using BPIRT are uniquely identified. This is
echoed by examining the posterior distributions for the ideal points, which never exhibit bimodality,
evidence that the sign-switching problem is not present in MCMC estimation.

Assessing Convergence for the BPIRT Algorithm

Convergence of the vote level difficulty parameters can be assessed using routine convergence diagnostics
included in the R package superdiag (Tsai et al. 2012). The number of dimensions retrieved from
the BPIRT procedure can also be monitored using standard convergence diagnostics. However, due
to the discrete nature of this value, it is often more beneficial to assess convergence using visual
inspections. Assessing the convergence of the difficulty parameters, ideal points, and elements of the
binary matrix proves more challenging due to the varying dimension nature of the set of estimates that
make up each set of structural parameters. Convergence for these parameters is not directly assessed.
Rather, convergence diagnostics are performed on the mean of the latent distribution passed to the
data augmentation step - (r j � λ j)ωi − α j . Similarly, I monitor the log-likelihood of the data given
the implied model at each step and use this to assess convergence of the posterior distribution of the
log-likelihood of the data. Under a converged model, the log-likelihood should be 1) unimodal and
approximately symmetric and 2) show behavior that appears as a random walk over iterations. Both
of these conditions are generally met when allowing the procedure to have a long burn-in. There
is relatively low autocorrelation between draws when the stationary distribution is reached, so the
parameter space is explored relatively quickly. Similarly, the posterior distributions of interest are
normally distributed due to the conjugacy of the model. Thus, the number of draws needed to truthfully
represent the posterior distributions are relatively low.

Methods for Achieving Faster Convergence

As with many MCMC procedures, setting good starting values is a key aspect to achieving fast
convergence to the stationary posterior distribution. Using the matrix of binary random variables, I
used principal components to put together a reasonable set of starting values. For any values that were
missing, I used multiple imputation to quickly fill-in the missing values. I then ran PCA on this full
matrix and kept Pois(1) of the scores and loadings as the latent variables and discrimination parameters,
respectively. I always started the difficulty parameters at 0 and set 50% of the elements of each column
of R to 1. The variance parameters are always started at 1.

One potential problem arises at the beginning of aMCMC chain - if the starting values are particularly
bad and the RNG is not giving favorable initial draws from the infinite part of the feature sampler,
it is possible for the number of features at the end on an MCMC iteration to move to zero. This is
problematic. In order to prevent this behavior, I chose to begin each chain of the MCMC procedure
with 100 iterations where the IBP prior 1) did not look at the number of other votes which took on a
feature when determining if it would take the feature (i.e. setting Equation A9 equal to 1 for all votes)
and 2) did not use the infinite search over the feature space. This creates a period where the model
simply learns the ideal points over a fixed number of dimensions. Once the ideal points begin to sort,
the rest of the model runs smoothly and there is never less than 1 dimension in the analysis.
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Simulation Exercises

In order to understand how BPIRT estimates the binary matrix that encodes each vote’s dimensionality
and, in turn, the dimensionality of the underlying policy space, I ran simulations on data sets with
known parameters and examined how BPIRT uncovers the true underlying latent structure of the data.

The purpose of these simulations is two-fold. First, it is necessary to examine how accurately BPIRT
recovers the binary matrix associated with the matrix of discrimination parameters from a known data
generating process as a function of the number of voters, number of votes, and the true underlying
dimensionality of the latent policy space. Given that the goal of BPIRT is to recover the vectors that
dictate which votes correspond to which dimensions of the underlying policy space, it is important
to understand when the procedure succeeds in providing an accurate representation of this data.
Second, and closely related to the first goal, it is important to understand the properties of the Indian
Buffet Process prior across varying numbers of votes, voters, and true underlying dimensionalities.
In particular, it is important to examine the ability of the IBP prior to recover the true number of
dimensions and to ensure that BPIRT does not uncover spurious sets of features that do not correlate
with the true underlying feature set. While theory dictates that the IBP will uncover the exact solution
when the number of votes and voters is large, roll call data sets are inherently limited in the number of
voters and the number of votes made within a session. Thus, understanding the small and medium
sample properties of this nonparametric prior is of interest.

In order to simulate data that has a similar structure to actual roll call data, I used PCA on a set of 928
votes made by 428 members of the 105th session of the U.S. House to estimate a seven-dimensional
covariance matrix. This covariance matrix was used to generate simulated roll call data sets with
100/250/400 voters, 100/450/900 votes, and 1/3/5/7 true underlying dimensions in the latent policy
space. These simulated data sets were then passed to an implementation of BPIRT and the structural
parameters were estimated. Each Markov Chain Monte Carlo routine was run with a burnin of 5000
iterations and 1000 unthinned draws were taken from the stationary posterior distribution over 2 chains.
There were no indications of convergence issues in these simulations.

I first examine the relationship between number of voters, number of votes, the true dimensionality
of the vote set, and the dimensionality uncovered by BPIRT using the Indian Buffet Process prior. The
number of dimensions uncovered by BPIRT for each simulation set can be seen in Table A1. On first
glance, it is easy to see that the behavior of the IBP prior to uncover the correct number of dimensions
expectedly depends on the number of votes. As shown by Ghahramani and Griffiths (2006), the number
of features represented by the prior increases in O(log(P)). This property is apparent in the simulation
sets as the ability to estimate the true dimensionality is contingent on having a large number of votes.
This relationship is also seen in the number of voters, though not as strongly. This property makes
sense, as one would expect that more observations would lead to more accurate estimation of model
parameters. However, the number of dimensions estimated appears to be capped in the number of
votes.

A second important observation is that the model is conservative in its estimation of new dimensions
when the number of votes or voters is low. In all cases, the number of estimated dimensions is lower
than the truth with small roll call voting data sets resulting in a one dimensional posterior. On the other
hand, when presented with a data set that is truly one-dimensional, BPIRT accurately estimates that
only one dimension is needed. This finding should assuage concerns that BPIRT uncovers spurious
dimensions. All in all, BPIRT provides a useful tool for estimating the dimensionality of the underlying
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Kevin McAlister

TABLE A1. Number of Dimensions Estimated From Simulated Data With Various Numbers of
Voters, Votes, and Known Dimensionalities Using BPIRT

Voters
Votes

100 450 900
100 1 1 1
250 1 1 1
400 1 1 1

(a) True Dimensionality = 1

Voters
Votes

100 450 900
100 1 1 1
250 1 3 3
400 1 3 3

(b) True Dimensionality = 3

Voters
Votes

100 450 900
100 1 1 1
250 1 4 4
400 1 4 5

(c) True Dimensionality = 5

Voters
Votes

100 450 900
100 1 2 3
250 2 5 6
400 2 5 6

(d) True Dimensionality = 7

Note: Values reported are posterior modes. In almost every case, the posterior for number of dimensions
converged to a single value.

TABLEA2. Proportion of Elements in R Correctly Classified FromSimulated DataWith Various
Numbers of Voters, Votes, and Known Dimensionalities Using BPIRT

Voters
Votes

100 450 900
100 0.93 0.99 1.00
250 0.97 1.00 1.00
400 0.97 1.00 1.00

(a) True Dimensionality = 1

Voters
Votes

100 450 900
100 0.77 0.73 0.73
250 0.80 0.81 0.84
400 0.80 0.87 0.89

(b) True Dimensionality = 3

Voters
Votes

100 450 900
100 0.81 0.77 0.77
250 0.82 0.84 0.86
400 0.83 0.89 0.91

(c) True Dimensionality = 5

Voters
Votes

100 450 900
100 0.84 0.82 0.84
250 0.86 0.87 0.89
400 0.87 0.91 0.93

(d) True Dimensionality = 7

Note: Values reported are posterior medians.

policy space. In particular, it is well suited to examine whether or not a roll call data set requires only
one dimension to explain variance within the data set.

I also examine BPIRT’s ability to correctly uncover structural zeros in the binary matrix. Recall that
zeros in this matrix imply that a specific vote does not rely on variance explained by a given dimension
when explaining the underlying utility functions that lead to certain vote outcomes. The proportion
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Disagreement and Dimensionality

of correctly classified elements of R for each simulation set is shown in Table A2.1 The relationship
between the number of votes, number of voters, and accuracy in recovering elements of the binary
matrix is similar to the one seen in Table A1 - more votes and more voters results in more accurate
estimation of the structural parameters in R. However, unlike in the previous case, the accuracy of
estimation seems to be driven by the number of voters. This finding makes sense, however, as each
estimate within R is related to a specific vote/dimension combination. Thus, more voters means more
information about which sources of variation best describe the vote. Even in smaller samples, BPIRT
provides an accurate representation of the binary matrix. This is especially apparent in estimations with
a true one-dimensional model. All in all, these simulations show that BPIRT can accurately recover the
underlying structures which drive voting under the varying dimensions model of vote choice.

MULTIDIMENSIONALITY IN THE U.S. CONGRESS OVER TIME

For analysis in this section, I examine the roll call voting data sets for the 1st − 115th (1789 − 2017)
sessions of both chambers of the U.S. Congress, separately. Over the set of roll call votes in each
session, I analyzed votes that had at least 5 votes in the minority and voters that registered roll call
votes for at least 50% of the votes analyzed. I chose to run the BPIRT procedure on each roll call data
set for a burnin of 20,000 iterations and capture 1000 draws of the parameters from the stationary
posterior distribution over two independently initialized chains. Assessments of convergence both
within and across chains showed no evidence of lack of convergence.

The proportion of variance explained by a dimension for a vote can be derived using the properties
of the BPIRT model. Recall that the marginal probability of the augmented data under BPIRT is:

P(xi) ∼ NP(α, (R � Λ)(R � Λ)′ + IP) (A20)

Note that under the marginal posterior, each voter has the same probability density function. This
implies that the variance of the augmented data for a vote is:

V[x j] =
K∑

k=1
r j,kλ

2
j,k + 1 (A21)

Then, the proportion of variance explained (PVE) by a dimension on a vote can be defined as:

PVE j,k =
r j,kλ

2
j,k

K∑
h=1

r j,kλ
2
j,h

(A22)

Since each of these quantities presented in this section are, themselves, uncertain measures, the
posterior means are also associated with a 95% highest posterior density interval. In practice, these
ranges are very tightly bunched around the posterior means. As these quantities do not plot well, I
have chosen not to include the error bars in many of the figures. These quantities can be found in the
replication materials. The inclusion of 95% HPD intervals do not change the overall conclusions made
from any of the graphs included in this section.

1When constructing this data, I attempted to recreate the number and structure of dimensions that are typically
seen in roll call voting. This led to seven dimensions with a decreasing number of votes which took on each
dimension. Every vote took on the first dimension while other dimensions were only required for a proportion of
votes. This leads to the high hit rate when the true number of dimensions is one and the decrease in hit rate
between one and three.
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FIGURE A1. Relationship Between Number of Votes, Estimated Number of Dimensions, and
Prior Number of Dimensions Implied by IBP for each Session of the U.S. House
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For many sessions of the U.S. House and U.S. Senate, the posterior distribution for the number of
dimensions converged strongly on a single value. These sessions are indicated in Figure 1 by points
with no error bars. Exploring the infinite set of features using the beta process prior is contingent on
tuning parameters, which are outlined in the estimation procedure presented in the Appendix. Similarly,
the discrete nature of the posterior distribution for number of dimensions can lead to results that appear
to not have reached stationarity. Given the performance of BPIRT in simulation exercises, there is
strong evidence that these values are equal to or below the truth and assuage any concerns related to
not fully exploring the posterior. Other choices for these hyperparameters lead to results that share the
same mode but have higher values included in the 95% HPDs.

The relationship between the number of voters, number of votes, and estimated dimensionality is
well established in the simulation section. However, it is important to see how these relationships
manifest in the actual roll call data used in these applied examples. Similarly, one might question
whether or not these results are unduly driven by the choice of priors for the hyperparameters of the
IBP prior. To address these concerns, I checked the relationship between the number of votes, the
expected number of dimensions drawn from the IBP prior, and the estimated dimensionality.

Figure A1 shows the logarithm of the number of votes analyzed, the posterior mean number of
dimensions estimated, and the number of dimensions implied by the IBP prior using posterior means
values for the IBP hyperparameters for each session of the U.S. House. First, it is easy to see that

10

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate

A
PSR

Subm
ission

Tem
plate



Disagreement and Dimensionality

FIGURE A2. Number of Unidimensional and Multidimensional Votes Analyzed in Each Session
of the U.S. House
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there is s strong dependence in the number of votes and the prior number of dimensions implied by
BPIRT - the prior number of dimensions scales almost perfectly with the logarithm of the number of
votes with an additive constant implied by the IBP hyperparameters. On the other hand, there is not a
strong correlation between the posterior mean number of dimensions estimated by BPIRT and the prior
expected number of dimensions. This implies that the choice of prior is not unduly influencing the
number of dimensions estimated by BPIRT. However, the choice of prior does seem to place a cap on
the number of dimensions which can be estimated; the number of dimensions estimated rarely goes
above the number of dimensions implied by the prior. This behavior is expected due to the properties
of the IBP prior discussed in the simulations.

More Summaries of Multidimensional Voting in the U.S. House

Figure A2 shows the number of votes that were analyzed for each session of the U.S. House. These votes
are then classified as unidimensional or multidimensional by the posterior mean probability that a vote
requires more than the first dimension to best explain individual vote variation. This figure demonstrates
two key concepts. First, the sheer number of votes that occur within each session dramatically increase
after 1950. This allows BPIRT to better estimate the number of dimensions needed to model the roll
call data set and, in turn, allows for more multidimensionality in votes to appear. Second, this plot
makes it clear that the proportion of votes that were classified as multidimensional by BPIRT also
dramatically increases after 1950. While there is a downturn in this proportion in recent times, these
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FIGURE A3. Aggregate GMP and Proportion Correctly Classified Votes for the 1st - 115th
Sessions of the U.S. House

Probability of Correct Classification of Vote Using Optimal Cutpoint
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proportions are generally on par with the proportion of votes that were classified as unidimensional in
the mid-1800s. This is another way of showing that the unidimensional, party bloc voting of recent
times is not a unique occurrence.

GMP is only one way in which the quality of ideal point models is assessed. The most common
way in which models are compared is through correct classifications metrics. Using the ideal points
and other structural parameters, the proportion of votes that are correctly classified can be used to
demonstrate the ability of the model to partition "Yea" and "Nay" votes appropriately in different
situations. This metric is a natural fit for predictive models like NOMINATE, but does not necessarily
account for the uncertainty associated with each of the model parameter estimates (Carroll et al. 2009).
The proportion of votes correctly classified using optimal cutpoints for BPIRT was estimated using the
mean of the augmented posterior - µi, j = (r j � λ j)ωi − α j . If µi, j < 0, then the vote was a predicted
"Nay" and "Yea" otherwise. A similar calculation is used for NOMINATE.

Figure A3 shows the aggregate GMP and proportion correct classification under the optimal cutpoint
for both BPIRT and one-dimensional WNOMINATE model. Beginning with correct classification, it
is easy to see that BPIRT and a unidimensional WNOMINATE model yield similar results throughout
much of U.S. history, especially in recent sessions. While this could certainly be taken as evidence that
the unidimensional model is sufficient, correct classification done in this sense is theoretically deficient
and ignores the inherent uncertainty associated with ideal point measures while encouraging heavily
overfit models (Aldrich et al. 2014; Roberts et al. 2016). Ideal points are rarely used to predict new
votes; in fact, ideal points are almost always used to explain the voting behavior given the entirety of
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Disagreement and Dimensionality

TABLE A3. Correlation between Dimensions Estimated for the 107th U.S. House
Party Loyalty Procedural Security Budget Rural Foreign DOD

Party Loyalty 1.00 0.30 0.28 0.33 -0.07 -0.09 0.17
Procedural 0.30 1.00 0.35 0.05 -0.03 -0.07 0.25

Security 0.28 0.35 1.00 0.10 0.09 -0.04 0.16
Budget 0.33 0.05 0.10 1.00 0.13 -0.01 0.05
Rural -0.07 -0.03 0.09 0.13 1.00 0.04 -0.06

Foreign -0.09 -0.07 -0.04 -0.01 0.04 1.00 0.01
DOD 0.17 0.25 0.16 0.05 -0.06 0.01 1.00

Note: Values reported are posterior means for the Pearson correlation coefficient between estimated
ideal points.

votes for an analyzed period. It is imperative that ideal point fits are treated with the same probabilistic
rigor that any other inferential technique requires when attempting to explain behavior and, thus,
important to consider more statistically rigorous approaches when making choices about the underlying
parameters of ideal point models.

Proportion reduction in error metrics are similar to correct classification metrics (Carroll et al. 2009;
Aldrich et al. 2014; Roberts et al. 2016). These approaches are central to previous discussions of
how many dimensions are needed to model a roll call voting set. While these approaches provide
some information of this topic, they are post-hoc statistics that require a priori assumptions about
the structure of the underlying latent space. BPIRT estimates the dimensionality and necessity of
dimensions at a vote-level within its statistical procedure and, therefore, is incompatible with the notion
of adding or subtracting whole dimensions from the latent space. For this reason, I choose to avoid
inappropriate attempts to compare APRE and MPRE achieved from BPIRT.

More Summaries for the 107th U.S. House

Names were provided for each of the dimensions estimated by BPIRT for the 107th session of the U.S.
House using a suite of tools. First, I used vote classifications from voteview.com to analyze the set of
votes which had non-zero contributions to a dimension and saw general trends in the content of votes
that loaded in each dimension (Poole and Rosenthal 2012). Second, I utilized non-negative matrix
factorization and regularized logistic regression to extract important words from the bill summaries
associated with each vote on each set of votes. These tools created a general picture of what each
dimension was modeling. While still somewhat ad-hoc, this approach defines a general method that
will be useful for future research attempting to find trends in what each dimension means, over time.

BPIRT tends to extract dimensions which run relatively orthogonal to one another. One of the
advantages of the IBP prior is that it generally prevents against dimensions that are highly correlated
with one another from arising during estimation. This can be attributed to the IBP draws, which check
to see if there is any new information added by a new dimension while conditioning on previously
existing dimensions. Table A3 shows the pairwise correlations between dimensions estimated for
the 107th session of the U.S. House. Correlations for this session range from .01 to .35. While this
indicates that there are dimensions which are not orthogonal to one another, the correlation is still
relatively low.
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FIGURE A4. Highest PVE Dimensions and Number of Dimensions For Each Vote in the 107th
U.S. House
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Note: Values reported are estimates of the binary matrix from the iteration of the MCMC procedure
with the highest complete-data likelihood. Points on the main diagonal of the PVE graph required only
one dimension to best model variation within the vote.

One advantage that comes from utilizing an IBP prior is that votes are allowed to take on a collection
of dimensions rather than one, and only one, dimension. Given the complexity of the topics that are
being considered when votes are cast, this is a desirable property. BPIRT models this complexity and
presents the set of dimensions which each vote requires to best model its variance in voting. To this
end, it is interesting to examine the number of dimensions, and which dimensions, are chosen for
votes within the analyzed set. Figure A4 illustrates this dynamic by showing the dimensions with the
highest and second highest PVE for each vote analyzed. While around 35% of votes only require the
party loyalty dimension to model the roll call votes, the other 65% of votes require at least one other
dimension. However, all votes require a non-zero contribution from the party loyalty dimension. This
dynamic is partially due to the "rich get richer" property of the IBP prior, the fact that most votes
require the party loyalty dimension as the highest or second highest PVE dimension fits well with
theories of party control in U.S. legislative voting.
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